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1 Basics of Diffusion. We consider the transport of charges, particles and thermal energy. We denote jq, jn
and jU the associated currents and ρq, ρn and ρU the associated densities.

1. What are the three ways of transports of heat? Describe their physical origins.

2. Remind Ohm’s law, Fick’s law and Fourier’s law. Comment the differences.

3. What phenomenological approach leads to these laws.

4. Give the name, the dimension and an order of magnitude of the three phenomenological coefficients.

5. We introduce the creation rate by unit volume for each quantity: τq, τn and τU . What can be the physical
origin of these rates?

6. What physical principle can be used to get a diffusion equation for each of these quantities? Obtain these
equations for temperature and particle density.

7. Find the relaxation equation of the charge.

8. What difference is there between these different processes? What are the scale laws or typical scales for
these phenomena?

9. How would these equations be modified in the presence of a drift? In what physical context does this
happen?

10. What other diffusion phenomenon do you know?

Correction

1. Diffusion: exchange of heat using the gradient of temperature without movement. Convection: the
gradient of temperature generates a movement of the fluid mixing the temperature. Radiation: through
the emission of electromagnetic waves.

2. Ohm’s law: jq = γE. Fick’s law: jn = −D∇ρn. Fourier’s law: jU = −λ∇T. Ohm’s law works with
the electric field rather than with the charge density, but the electric field is generated by the gradient of
charge density. Fourier’s law works with the temperature rather than the density of thermal energy, but
this comes from the proportionality between this density and temperature in ideal cases.

3. Out-of-equilibrium there are fluxes j while at equilibrium the density ρ is homogeneous. This hypothesis
is then to consider that at first order the flux is proportional in the gradient of the density.

4. γ is the electric conductivity, in S/m. For a metal typically γ ∼ 107 usi while for wood for instance
γ ∼ 10−14 usi. D is the diffusivity, in m2/s. For air or water D ∼ 10−1 usi. λ is the thermal conductivity,
in W/mK. For metals typically λ ∼ 102 usi while for water for instance λ ∼ 10−1 usi.

5. For the charges or number of particles it may be chemical reactions. For the temperature anything gen-
erating heat like nuclear of chemical reactions and electronic waves.

6. We can use the conservation property. Thus,

∂tρn +∇ · jn = τn =⇒ ∂tρn = D∆ρn + τn (1)

∂tρU +∇ · jU = τU =⇒ ∂tT =
λ

ρC
∆T +

τU

ρC
(2)

where ρ is the mass density and C is the heat capacity.

7. For the charge we use Maxwell-Gauß law: ∇ · E =
ρq
ε , then:

∂tρq +∇ · jq = τq =⇒ ∂tρq +
γ

ε
ρq = τq (3)

8. For the charge, not only is there diffusion but the charges interacts electrically while the other processes
are interactionless. For pure diffuson there is a scale law τ ∼ l2 while for charge relaxation there is a
typical time ε

γ .
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9. If there is a drift, we need to use the transport theorem:

d
dt

∫
V(t)

ρ =
∫

V(t)
(∂tρ +∇ · (ρv)) (4)

if the volume V(t) is transported by the velocity distribution v. Then, the term ∂tρ would be replaced by
∂tρ +∇ · (ρv). This happens in fluid dynamics or for the transport of charges.

10. The viscosity in fluid dynamics.

2 Polymer Diffusion. In this exercise we work in the microcanonical ensemble and give a basic model to
describe a polymer. We consider a chain of N monomers of length a. Each monomer is linked to the previous
monomer and present a random angle of uniform probability. We are interested in the total length L of the
polymer.

1. What hypotheses are necessary to get a uniform distribution?

2. What is the expectancy E(L)? What is the mean squared expectancy L2 =
√

E(L2)? Comment.

3. We denote P(s, l) the probability to reach the position l after sN monomers. Find an equation of induc-
tion for P.

4. We go to the continuum limit by taking a → 0 and N → +∞ with fixed L2. Find a partial differential
equation for P. What do you recognize?

5. Solve this equation. Is this result surprising? (hint: it’s a Gaussian)

6. Calculate the entropy S(L)

7. Calculate ∂S
∂L . Give a physical interpretation of this result.

Correction

1. No interaction of contact between the monomers and no electric interactions on the monomers.

2. We may write L = a ∑N
i=1 li where the (li) are independent random variables describing the random

angles. By linearity of the expectancy we find E(L) = 0 and L =
√

E(L2) =
√

Na. The typical length
scale is in square root like diffusion.

3. By construction,

P(s +
1
N

, l) =
1

4π

∫
S2

dx P(s, l− ax). (5)

4. We goes at order 1
N which corresponds to order a2:

P(s, l) +
1
N

∂sP(s, l) =
1

4π

∫
S2

dx
(

P(s, l)− ax · ∇P(s, l) +
1
2

a2(x · ∇)2P(s, l)
)

. (6)

The term in a vanishes by symmetry. The term (x · ∇)2 becomes a Laplacian since the cross terms vanish
by symmetry. Finally we find a diffusion equation:

∂sP(s, l) =
1
6

L2
2∆P(s, l). (7)

5. We check that the solution is

P(s, l) =
(

1
6πsL2

2

) 3
2

e
− l2

6sL2
2 (8)

then

P(L) =
(

1
6πL2

2

) 3
2

e
− 1L2

6L2
2 . (9)

This is natural to get such a Gaussian because it is the central limit theorem.

6. The probability is proportional to the number of configuration because we are in the microcanonical
ensemble. Then, using Boltzmann formula we find up to a constant:

S(L) = −kB
L2

6L2
2

. (10)

7. We calculate
∂S
∂L

= −kB
1

3L2
2

L. (11)

The length being conjugated with the force, this is an entropic force which applies on the polymer gen-
erating a harmonic oscillator. Physically, this is the friction caused by thermal noise which pushes the
polymer to its state of maximal entropy, when L = 0.
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3 Shock Waves. We consider a compressible perfect fluid of mass density ρ, velocity field v and pressure
field P.

1. Remind the Euler equations for the fluid. Is this set of equations enough to close the system?

2. We suppose that the process is reversible and adiabatic. Deduce an additional equation for the entropy
density s per unit mass.

3. We denote ε the internal energy density per unit mass. What is the relation between s and ε?

4. We denote e the total energy density. Give its expression.

5. Demonstrate that
∂te +∇ · ((e + P)v) = 0. (12)

6. Deduce that when the flow is stationary, he f f = ε + 1
2 v2 + P

ρ is preserved along the lines of current.

7. What is the velocity of sound cs? Give its expression.

8. We define the Mach number as Ma = v
cs

. Discuss what happens when Ma becomes larger than 1. Make
figures.

9. In what follows we consider a stationary fluid and follow a line going from Ma > 1 to Ma < 1. Show
that

d(ρu)
du

= ρ(1−Ma2). (13)

10. Plot ρu as a function of u and comment.

In practice the velocity of sound is dependent of u. We denote it c(u) and the Mach number is u
c(u) . We

denote with a star (like u∗) the properties at Ma = 1 and Ma∗ = u
c∗ . We remind that for a polytropic

perfect gas c2 = γRT and its enthalpy is ε + P
ρ = CPT = c2

γ−1 . We now consider such a gas.

11. Give a relation between Ma and Ma∗. Comment the case Ma→ +∞.

12. Give 3 laws of conservation through the interface Ma = 1.

When the line goes across the sound wall the Prandtl law applies: u1u2 = c∗2. From these laws specified
for the polytropic perfect gas one may calculate

P2

P1
= 1 +

2γ

γ + 1
(Ma2

1 − 1) and
T2

T1
=

(
1 +

2γ

γ + 1
(Ma2

1 − 1)
)

2 + (γ− 1)Ma2
1

(γ + 1)Ma2
1

. (14)

13. Calculate the entropy shift s2 − s1. Comment.

Correction

1. The Euler equations are

(∂t + v · ∇)ρ = −ρ∇ · v ρ(∂t + v · ∇)v = −∇P. (15)

The system is not closed between there is no constraint on P. We need an equation of state an thermody-
namic evolution equation.

2. s is conserved so that
(∂t + v · ∇)s = 0. (16)

3. The thermodynamic identity dU = TdS− PdV becomes dε = Tds + P
ρ2 dρ.

4. We total energy is e = ρε + 1
2 ρv2.

5. The evolution of e is

(∂t + v · ∇)e = ε(∂t + v · ∇)ρ + ρT(∂t + v · ∇)s + P
ρ
(∂t + v · ∇)ρ +

1
2

v2(∂t + v · ∇)ρ (17)

+ρv · (∂t + v · ∇)v (18)

=
e + P

ρ
(∂t + v · ∇)ρ− v · ∇P. (19)

One easily checks that developing the expected result gives the same expression.

6. We have ∇ · ((e + P)u) = ∇ · (he f f ρv) = 0 and from Euler equations ∇ · (ρv) = 0. Thus, v · ∇he f f = 0.

7. This is the velocity of mechanical waves in the fluid. Its expression is c2
s = 1

ρ0χS
where ρ0 is the averaged

mass density and χS is the compressibility.
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8. This is the sound wall: the perturbations accumulates at Ma = 1.

9. From Euler equations udu = −dP
ρ . Thus, dρ

du = dP
du

dρ
dP = − ρ

u ρχS = − ρu
c2

s
. Then, d(ρu)

du = ρ − ρ u2

c2
s
=

ρ(1−Ma2). After Ma = 1 when u increases ρu decreases so that the density becomes very low.

10. We use that he f f =
1
2 u2 + c2

γ−1 is preserved. The comparison with the state at Ma = 1 gives

1
2
+

1
(γ− 1)Ma2 =

(
1
2
+

1
(γ− 1)

)
1

Ma∗2
=⇒ Ma∗2 =

γ + 1
γ− 1 + 2

Ma2

. (20)

When Ma→ +∞ then Ma∗ →
√

γ+1
γ−1 so that u is upper bounded.

11. Conservation of mass: ρ1u1 = ρ2u2. Conservation of momentum: ρ1u2
1 + P1 = ρ2u2

2 + P2. Conservation
of energy: he f f ,1 = he f f ,2.

12. We use the thermodynamic identity dh = Tds + 1
ρ dP i.e.

ds =
dh
T
− dP

ρT
= CP

dT
T
− R

dP
P

=⇒ s2 − s1 = CPln
(

T2

T1

)
− Rln

(
P2

P1

)
. (21)

Thus,

s2 − s1 = Cvln
(

1 +
2γ

γ + 1
(Ma2

1 − 1)
)
+ CPln

(
2 + (γ− 1)Ma2

1

(γ + 1)Ma2
1

)
. (22)

This cannot be negative so that Ma1 cannot be too small. Since we may choose anywhere on the line we
conclude that Ma1 > 1 and then Ma2 < 1. There can be a sound wall only from Ma > 1 to Ma < 1.
Moreover, we see that there is a production of entropy which is natural since a sound wall is all but
an equilibrium. However we remember that we included no dissipation and supposed the flow to be
reversible and adiabatic. Understanding properly the origin of this entropy is an open question.
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