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1 Diffusion Equation. In this exercise we solve explicitly the diffusion equation

∂tu = D∂2
xu (1)

over R+ ×R with initial condition u(t = 0, x) = u0(x).

1. Show that we have the following similarity principle: if u(t, x) is solution for t > 0 then v(t, x) =
u(λt,

√
λx) is solution too.

2. Heuristically, why can we expect to be able to restrict the partial differential equation in an ordinary
differential equation with variable s = x√

Dt
?

3. We define u(t, x) = v
(

x√
Dt

)
. Find an equation for v.

4. Solve the equation in v by imposing u0(x = 0).

5. The previous solution is only partial because we have imposed the invariance by the dilatation λ but u0
may be not non constant. To get the complete solution, the idea is then to perform a convolution between
the kernel

K(t, x) =
1√

4πDt
e−x2/4Dt (2)

and the initial condition u0. Check that K is solution of the diffusion equation and give the general
solution.

6. (Bonus) Solve the diffusion equation using a Fourier transform.

Correction

1. We calculate ∂tv(t, x) = λ∂tu(λt,
√

λx) = Dλ∂2
xu(λt,

√
λx) and ∂2

xv(t, x) = λ∂2
xu(λt,

√
λx). Thus, ∂tv =

D∂2
xv indeed.

2. If u is solution, by taking λ = x√
Dt3 , which is not constant, we find that u(s, Ds3/2) which has only has

one parameter s. This gives us the idea to look for a solution u of one variable.

3. We calculate

∂tu(t, x) = − x

2
√

Dt3
v′
(

x√
Dt

)
(3)

and

∂2
xu(t, x) =

1
Dt

v′′
(

x√
Dt

)
. (4)

Thus,
v′′(s) = − s

2
v′(s). (5)

4. By usual techniques we find: v′(s) = v′(0)e−s2/4 and then

v(s) = v′(0)
∫ s

−∞
e−s2/4ds =

√
4πv′(0)

∫ x/
√

Dt

−∞

1√
4πDt

e−x2/4Dtdx. (6)

When t→ 0, 1√
4πDt

e−x2/4Dt → δ0. Imposing the initial condition, we then get

u(t, x) = u0(0)
∫ x/

√
Dt

−∞

1√
4πDt

e−x2/4Dtdx. (7)

5. We easily check that ∂tK = D∂2
xK. Thus, the complete solution writes

u(t, x) =
∫

R
K(t, x− y)u0(y) (8)

because K is solution and converges to the Dirac when t→ 0.
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2 Central Limit Theorem. We consider a series (Xn) of random variables which are independent and of
identical distribution. We assume X to have moments of order 2 (i.e. the variance is well defined). We denote
µ the mean and σ is mean-squared value of the distribution. We finally denote Sn = ∑n

i=1 Xi.

1. Prove Markov identity: let A be a positive random variable and ε > 0, then

P(A ≥ ε) ≤ E(A)

ε
. (9)

2. Deduce the law of Large Numbers:
1
n

Sn −→ µ (10)

where the limit is defined by: ∀ε > 0, for large enough n, P(| 1n Sn − µ| ≥ ε) ≤ ε. A stronger version (the
almost sure convergence) of this theorem can also be proved.

3. We denote ϕX(t) = E
(
eitX) the characteristic function of X. This is the Fourier transform of its distribu-

tion. Express ϕ√n( 1
n Sn−µ) as a function of ϕY where Y = X− µ.

4. Give an estimate at second order of ϕY when t→ 0.

5. Deduce the limit of ϕ√n( 1
n Sn−µ) when n→ +∞ for infinitesimal t.

6. We admit Levy’s theorem which states if ϕXn converges to the characteristic function of some distribution
X∞, then Xn → X∞. Deduce an expansion of 1

n Sn at order o
(

1√
n

)
. This is the Central Limit Theorem

(CLT).

Correction

1. We always have A ≥ ε1A≥ε. Taking the average: E(A) ≥ εP(A ≥ ε).

2. Let ε > 0,

P

(
| 1
n

Sn − µ| ≥ ε

)
= P

((
1
n

Sn −E

(
1
n

Sn

))2

≥ ε2

)
≤

V
( 1

n Sn
)

ε2 =
σ2

nε2 < ε (11)

for n large enough.

3. Using the independence of the (Xn), we have:

ϕ√n(( 1
n Sn−µ)(t) = E

(
eit(Sn−nµ)/

√
n
)
= E

(
eit(X−µ)/

√
n
)n

= ϕY(t/
√

n)n. (12)

4. When t = 0, ϕY(0) = E (1) = 1. Then, ∂t ϕY(0) = E (iY) = 0 and ∂2
t ϕY(0) = E

(
−Y2) = −σ2. Thus,

ϕY(t) = 1− 1
2

σ2t2 + o(t2). (13)

5. Taking the limit,

ϕ√n(( 1
n Sn−µ)(t) = ϕY(t/

√
n)n = (1− 1

2n
σ2t2 + o(t2))n → exp

(
−1

2
σ2t2 + o(t2)

)
. (14)

6. We recognize the Fourier transform of a Gaussian: 1√
2πσ2 e−

x2

2σ2 dx. We then deduce that
√

n(( 1
n Sn − µ)→

N (0, σ2). In other words, we have the expansion

1
n

Sn = µ +
1√
n
N (0, σ2) + o

(
1√
n

)
= N

(
µ,

σ2

n

)
+ o

(
1√
n

)
. (15)

2 Beyond the Central Limit Theorem: the Large Deviations. In practice some events do happen and can
be physically crucial. The goal of Large Deviation theory is to estimate the probability of such rare events. We
use the same notations than is the previous exercise and denote p the distribution of X. We also assume X not
to be almost sure (i.e. its distribution is not a Dirac).

1. Let a ≥ µ. Prove that for any λ ≥ 0, we have

P

(
1
n

Sn ≥ a
)
≤ en(m(λ)−λa) (16)

where m(λ) = ln
(
E
(
eλX)) = ln

(∫
eλxdp(x)

)
.
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2. We now want to optimize our estimate. We denote f (λ) = m(λ)− λa. Study the form of this function
and deduce that it admits a unique minimum for some λ ≥ 0.

3. We denote λ̄ this minimum and Ω(a) = f (λ̄) the grand deviations function. Similarly, we define Ω for
a ≤ µ. When is Ω maximum? What is its maximum value?

4. Calculate m′(λ̄) and Ω′(a). Do these relations remind you something?

5. Study the function Ω.

Correction

1. We calculate

P

(
1
n

Sn ≥ a
)

=
∫

1
n Sn≥a

n

∏
i=1

dp(xi) ≤
∫

1
n Sn≥a

n

∏
i=1

dp(xi)enλ( 1
n Sn−a) (17)

≤
∫ n

∏
i=1

dp(xi)enλ( 1
n Sn−a) = en(m(λ)−λa). (18)

2. We calculate f ′(λ) =
E(XeλX)

E(eλX)
− a. In particular, f ′(0) = µ− a ≤ 0. Moreover,

f ′′(λ) =
E
(
X2eλX)

E (eλX)
−

E
(
XeλX)2

E (eλX)
2 = Eλ(X2)−Eλ(X)2 = Vλ(X) ≥ 0 (19)

where we have identified the expectancy given a modified distribution. We deduce f is convex and
even strictly convex because X is not almost sure. Then, f admits a unique minimum which is positive
because f ′(0) ≤ 0.

3. By definition, for a ≥ µ, P
( 1

n Sn ≥ a
)
≤ enΩ(a) and when a ≤ µ, P

( 1
n Sn ≤ a

)
≤ enΩ(a). These inequalities

are almost equalities thanks to our optimization, we then expect Ω to be maximum for a = µ. For sure,
Ω ≤ 0. Moreover, going back to question 2 we see that for a = µ, λ̄ = 0 then Ω(µ) = 0. Thus, a = µ is
indeed the maximum.

4. Using that λ̄ is the minimum of f we deduce f ′(λ̄) = m′(λ̄)− a, i.e. m′(λ̄) = a. Thus, Ω′(a) = m′(λ̄)dλ̄
da −

a dλ̄
da − λ̄ = −λ̄. These are the same relations than between the Lagrangian and the Hamiltonian. f = L,

Ω = H, a = v and λ̄ = p. This is natural because both cases are Legendre transforms.

5. We have Ω′′(a) = −dλ̄
da ≤ 0, which is clear on a graph. We deduce that Ω is concave with its maximum

at µ.
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