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In this paper we examine how porosity fluctuations affect the hydrodynamic perme-
ability of a porous matrix or membrane. We introduce a fluctuating Darcy model, which
couples the Navier-Stokes equation to the space- and time-dependent porosity fluctuations
via a Darcy friction term. Using a perturbative approach, a Dyson equation for hydro-
dynamic fluctuations is derived and solved to express the permeability in terms of the
matrix fluctuation spectrum. Surprisingly, the model reveals strong modifications of the
fluid permeability in fluctuating matrices compared to static ones. Applications to various
matrix excitation models, the breathing matrix, phonons, and active forcing, highlight
the significant influence of matrix fluctuations on fluid transport, offering insights for
optimizing membrane design for separation applications.
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I. INTRODUCTION

Porous media and membranes are the cornerstone of many industrial processes, from desalination
to waste water treatment, from catalysis to energy storage and conversion. Fluid transport through
these materials is generally a limiting factor, as the porosity hinders fluid motion. For example, a
trade-off is unavoidable in filtration processes between the membrane selectivity (which is promoted
by steric sieving) and its permeability (limited by the tortuous viscous flows across the porous matrix
[1]). Bypassing such limitations is a key motivation to design new materials and principles for fluid
transport [2,3]. Interestingly, nature has found strategies to partly circumvent such limitations, with
the paradigmatic example of aquaporins, both selective and highly permeable. Accordingly, the
emerging properties of fluid transport at nanoscales, at the heart of nanofluidics, are definitely an
asset in this quest [4–6]. A whole cabinet of curiosities has been unveiled, from nearly frictionless
flows, dielectric anomalies, memory effects and nonlinear ionic transport, to cite a few [7–9].

Several studies suggested that fluctuations, whether in the fluid or the confining material, are
becoming an increasingly significant factor affecting nanoscale fluid transport [10–13]. Wiggling
channels were shown to play a significant role in biological transport [14–16], as well as in the
diffusion and separation of species across artificial fluctuating channels [17–25], while the flexibility
of electrodes materials was shown to accelerate charging dynamics in supercapacitors [26]. It is
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FIG. 1. Model and theoretical procedure. (a) Schematic of the model. We consider a liquid flowing through
a fluctuating porous medium. At a coarse-grained level, the dissipation on the matrix is described in terms of
a friction-like Darcy term in Navier-Stokes equation, here fluctuating in time and space. (b) Green’s function
of the flow in absence of thermal fluctuations in the solid as a function of frequency for q ≈ 6 nm−1. (c)
Diagrammatic Dyson equation to compute the effective Green’s function Gv in the presence of thermal
fluctuations of the solid. These fluctuations are taken into account through a self energy �. (d) Diagrammatic
representation of the self-energy �.

also noticeable that transport is not only affected by fluctuations in channel shape, but also by more
complex collective modes of the pore walls, such as plasmons, phonons, and so on [27–30]. Hence,
this couples nanofluidics with the solid’s degrees of freedom at the scale of a single pore [31–33].

In this paper, we investigate theoretically how fluctuations of a porous matrix influence its
hydrodynamic permeability. The latter is defined as the averaged fluid velocity v f under a pressure
gradient ∇P,

〈v f 〉 = K
η

(−∇P), (1)

with η the fluid shear viscosity. The permeability has the dimension of a length squared. This is a
collective transport property, which can be interpreted, via fluctuation-dissipation theorem, as the
collective diffusion of the fluid center of mass [34]. For a static structure, the bare permeability K0

accounts for the meandering flows across the porous matrix. Now in a fluctuating matrix structure,
not only the flow will be affected by the change in the typical pore size, but the breathing of
the matrix porosity is expected to induce secondary flows that will impact the global dissipation,
hence the permeability K. Molecular dynamics simulations have actually revealed that the impact
of wall fluctuations is substantially larger on the collective diffusion as compared to any individual
contribution [21]. However, this counterintuitive effect remains so far unexplained.

II. FLUCTUATING DARCY EQUATION FOR THE POROUS FLOW

Fluid transport in porous membranes is usually well described by the coarse-grained Navier-
Stokes-Darcy equation [35] and as a minimal model we build on this framework to propose a
fluctuating Darcy description to account for the matrix fluctuations

ρm
∂v
∂t

= −∇P + η�v − ρmξ (X )v + δf . (2)

Here, v is the fluid velocity, ρm its mass density, P the pressure, and ξ (X ) the effective friction
coefficient of the fluid on the porous matrix according to Darcy’s law; X is a (fluctuating) internal
parameter characterizing the matrix porosity and its fluctuations. The friction coefficient is de
facto defined at mesoscales, i.e., scales much larger than the pore sizes, and takes into account
the friction encountered by the fluid while crossing the nanopores, see Fig. 1(a). The nonlinear
advection term has been discarded since we are interested in low Reynolds-number flows taking into
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account fluctuations at frequencies and wave vectors where advection remains negligible. Finally,
the fluctuations of the fluid dynamics originate from the Gaussian noise δf whose correlations are
linked to the two dissipation terms— the viscosity η and the friction coefficient ξ (X )—according to
the fluctuation-dissipation theorem.

The space- and time- dependent internal parameter X (r, t ) entering the friction coefficient ξ (X )
accounts for the internal microscopic degrees of freedom of the solid matrix and its porosity. For
example, below we will assume that X identifies with the normalized fluctuations of the internal
density of the breathing solid. In the spirit of [17], we assume that this parameter fluctuates slowly
compared to the microscopic processes from which solid-liquid friction emerges—typically above
100 THz for van der Waals and Pauli interactions—but may reach frequencies comparable to hy-
drodynamic modes. We further assume that its fluctuations are independent from the hydrodynamic
fluctuations, which is valid when the modes of the solid either relax quickly to equilibrium or are
dominated by an external forcing. Then in its most general form, it is a centered stochastic process
characterized by its correlation functions, in particular its structure factor

SX (r, t ) = 〈X (r, t )X (0, 0)〉0, (3)

where the subscript 0 refers to averages taken on the solid matrix fluctuations in the absence of
interactions with the fluid.

The equations of motion are complemented by an equation of conservation of mass. In our
minimal model, we will restrict to fluctuations of the porous matrix geometry which modify the
Darcy friction coefficient ξ (X ) but do not involve significant changes of volume, like variations
in pore sizes and solid’s roughness. As a consequence, the equation of conservation of mass does
not involve the variations of X and can be standardly eliminated in Fourier space by applying the
projector on transverse modes J(q) = Id − qq/q2 on the induced velocity field.

Finally, to illustrate the effects of the matrix fluctuations, we will consider a first-order expansion
of the friction coefficient in X :

ξ (X ) = ξ0 + ξ1X (r, t ). (4)

Expressions for ξ1 can be explicited for specific models and can be positive or negative. Beyond this
approximation, one could consider higher order in the expansion of ξ (X ) in terms of the parameter
X . Such corrections will affect the effect of fluctuations on the resulting permeability for strongly
fluctuating matrices. We leave such higher-order terms to future work since we are mostly interested
in the generic effects of fluctuations on the permeability.

III. FLUCTUATION-INDUCED RENORMALIZATION OF THE PERMEABILITY

A. Quasistatic regime

Let us first consider the limiting regime where the variations of X are much slower than the
hydrodynamic fluctuations. The averaged permeability takes the expression K = 〈 ν

ξ (X ) 〉 where the
average is taken over X and ν = η/ρm the kinematic viscosity. This result should be compared
with the ”bare” permeability defined in terms of the quasistatic friction coefficient and the average
permeability K0 = ν

〈ξ (X )〉 . Assuming that X follows a Gaussian law, and for the linear model ξ (X ) =
ξ0 + ξ1X (r, t ), one obtains K

K0
� 1 + ( ξ1

ξ0
)2〈X 2〉,which is valid in the limit of small fluctuations (i.e.,

neglecting terms beyond 〈X 2〉). This quasistatic result is general by convexity and in the quasistatic
limit, the average permeability is larger than the permeability obtained from the average friction
K � K0. Note that this results remains valid for a quadratic friction model as well, with ξ (X ) =
ξ0 + ξ1X (r, t ) + ξ2X (r, t )2.
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B. General case

In the general case, the fluctuations of X do couple with the hydrodynamic fluctuations described
by the fluctuating Darcy equation, Eq. (2), and the quasistatic assumption no longer holds. To
calculate the momentum fluctuations and the permeability, one introduces a generic deterministic
external force ρmFext (r, t ) applied to the fluid in Eq. (2) and computes the resulting velocity field.
Going to Fourier space, we thus compute the Green’s function Gv of transverse modes of the velocity
field—a generalized Stokeslet—such that 〈v〉 = GvJFext, with J the projector on transverse modes.
The permeability K is then defined as the zero-frequency and zero-wave-vector limit of the Green’s
function of transverse modes

K
ν

= Gv(q = 0, ω = 0). (5)

We note that the fluctuation-dissipation theorem allows rewriting Eq. (5) in terms of a Green-Kubo
relationship for K, hence interpreted as a collective diffusion coefficient of the fluid center of mass
fluctuations.

We now compute the Green’s function of the flow in the presence of the fluctuations of the solid.
Using Eqs. (2) and (4) and incompressibility, the fluid velocity writes in Fourier space

v(q, ω) = G0
vJ[−ξ1X �v + δf + Fext], (6)

where � denotes the convolution in both frequencies and wave vectors:

[X �v](q, ω) =
∫

dq̄dω̄

(2π )4
X (q̄, ω̄)v(q − q̄, ω − ω̄). (7)

Here, we introduce the Green’s function of the Darcy equation for a static solid

G0
v(q, ω) = 1

q2ν + ξ0 − iω
. (8)

Depending on the wave vector, this noninteracting Green’s function, shown in Fig. 1(b), varies
typically in the frequency range 10 GHz to 100 THz. If the solid’s fluctuations are slow compared to
the variations of hydrodynamic velocity, their convolution decouples and we recover the quasistatic
limit.

However in the more general case, Eq. (6) should be averaged over the various fluctuations to
obtain the effective Green’s function of the flow. To this end, we introduce a perturbative expansion
of the velocity field v in the coupling constants ξ1. At the leading order, we simply have

v0(q, ω) = G0
vJ[δf + Fext], (9)

which we then inject in the right-hand side of Eq. (6), providing the basis of a systematic expansion
in powers of ξ1. For instance, we obtain to second order

v2(q, ω) = ξ 2
1 G0

vJX �
{
G0

vJX �
(
G0

vJ[δf + Fext]
)}

. (10)

We then average over thermal noise using that 〈X 〉 = 0, 〈δf〉 = 0 and 〈Xδf〉 = 0. We assume X to
be a Gaussian field with correlations

〈X (q, ω)X (q̄, ω̄)〉 = (2π )4δ(ω + ω̄)δ(q + q̄)SX (q, ω). (11)

As a consequence, the odd orders of the expansion vanish in average and the first relevant term is

〈v2(q, ω)〉 = G0
vJ�(q, ω)G0

vJFext, (12)

where we introduce the self-energy

�(q, ω) = ξ 2
1 [SX �αJG0](q, ω). (13)
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Note that we introduce a factor αJ, which is a geometrical factor originating in the projections on
transverse modes. As shown in Appendix A, this leads in fine to a modification of the prefactor,
calculated as 5/6.

Beyond the second order, this expansion can be made systematic thanks to a Dyson equation

Gv(q, ω) = G0
v(q, ω) + G0

v(q, ω)�(q, ω)Gv(q, ω), (14)

which is represented diagrammatically in Figs. 1(c) and 1(d). After resummation, the average fluid
velocity then reads 〈v〉 = GvJFext with an effective Green’s function

Gv(q, ω) = 1

q2ν + ξ0 − �(q, ω) − iω
. (15)

Physically, it corresponds to the Fourier transform of the effective Darcy equation describing the
flow after averaging over the fluctuations of the solid.

We can now expand the self-energy � in powers of the wave vector q (there is no linear term in
q due to isotropy), writing

�(q, ω) = �(q = 0, ω) + 1
2∂2

q �(q = 0, ω)q2 + · · · , (16)

which allows calculating the effective parameters for the Darcy equation in the presence of the
matrix fluctuations. At zeroth order, we can interpret the self-energy as a correction to Darcy’s
friction coefficient. In the present modeling, the apparent friction is always decreased as compared
to the static case ξ0: ξapp = ξ0 − �ξ , with �ξ = �(q = 0, ω = 0) > 0 calculated as

�ξ = 5ξ 2
1

12π3

∫ ∞

0
dq

∫ ∞

0
dω q2SX (q, ω)Re

[
G0

v(q, ω)
]
. (17)

The renormalized permeability of the system is then deduced as

K = ν

ξapp
= K0

1 − �ξ

ξ0

, (18)

with K0 = ν/ξ0 the static permeability. Quantitatively, we find that in all practical cases (see below),
the permeability cannot be described by the quasistatic result, confirming the need for tackling fluc-
tuations in full generality. We finally note that, similarly to the quasistatic case, non-Gaussian terms
have to be accounted for large fluctuations (hence large �ξ ), which can be handled systematically
as additional higher-order self-energy terms. We leave this detailed calculation for future studies
and focus here on the qualitative effect of fluctuations on the permeability.

Equations (17) and (18) are the main result of this work. They predict the renormalized perme-
ability in terms of the solid fluctuation spectrum, SX . Strikingly, under the present assumptions of the
model, �ξ is systematically positive and thus the permeability is always enhanced in the presence
of fluctuations. Furthermore, according to Eq. (17), the increase in permeability will be maximized
when the spectra of the hydrodynamic and solid-state fluctuations do overlap, corresponding to a
syntonic frequency matching.

Going now to second order in q in the expansion of �, we find a term that can be interpreted as a
correction to the viscosity originating from the coupling of solid correlations to the fluid dynamics.
We obtain accordingly an apparent viscosity νapp = ν + �ν, with

�ν = 5ξ 2
1

6

∫ ∞

0

dqdω

4π3
q2SX (q, ω)∂2

q Re
[
G0

v(q, ω)
]
. (19)

However, in spite of its fundamental interest, we find that this viscosity correction is negligible is
most practical situations, see Appendix A.

Altogether, gathering the contributions of the apparent permeability and viscosity, one obtains
a renormalized Darcy equation which accounts for fluctuations of the porous matrix. Let us now
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apply this formalism to practical situations to evaluate the effects on the permeability. This requires
specifying the structure factor SX of the matrix fluctuations.

IV. APPLICATION TO FLUCTUATING MATRICES

A. Permeability across a breathing array of spheres

As a first, prototypical example, we consider a porous matrix made of an array of fluctuating
spheres, with radius R and a number density ρs. The liquid can flow through the array, with a
Reynolds number assumed to be much lower than 1. In the static case, the permeability K can be
explicitly calculated as a function of the sphere radius R and the volume fraction of the spheres
c = 4

3πR3ρs [36]. Indeed, the force exerted on the flow by one sphere of the array can be computed
as

F1 = 6πηRκ (c)v, (20)

where the function κ (c) takes the following form for c � 1:

κ (c) � 1 + αc1/3, with α � 1.7601. (21)

Then, the volumic friction force that the fluid undergoes when flowing through the medium reads

f = ρsF1 = 6πηρsRκ (c)v. (22)

Let us now assume that each sphere has some intrinsic breathing dynamics, leading to fluctu-
ations of the radius R = R0 + r of the sphere around a mean value R0, and that these dynamics
are uncorrelated between spheres. One may accordingly define the parameter X for a sphere as
the normalized variation of the inner density of the spheres, i.e., X ≡ (R0/R)3 − 1 � −3r/R0. The
volume fraction c then behaves as c = c0(1 + 3r/R0) = c0(1 − X ) Thus, at lowest order in X ,

f = ρm(ξ0 + ξ1X )v, (23)

with

ξ0 = 6πηaρs

ρm

(
1 + αc1/3

0

)
and ξ1 = −2πηaρs

ρm

(
1 + 2αc1/3

0

)
. (24)

We now specify the breathing dynamics for r, which we model by an overdamped Langevin
equation on r. We denote by ω0 the intrinsic breathing frequency of the sphere, and γ the damping
rate of the breathing modes, such that the fluctuating dynamics of the sphere reads

γ ṙ = −ω2
0 r + 1

m
δ f (t ), (25)

with m an apparent mass of the radius dynamics and δ f (t ) being some Gaussian noise with zero
average. We can then directly compute the fluctuations of the sphere radius, embedded in its
structure factor Sr (t − t ′) = 〈r(t )r(t ′)〉. The Fourier transform of Sr is found by either solving the
Langevin equation or using the fluctuation-dissipation theorem

Sr (ω) = 2γ kBT

m

1

(γω)2 + ω4
0

. (26)

The fluctuations of the parameter X are accordingly characterized by a structure factor
SX (q, ω) = 9

R2
0
Sr (q, ω). Since the sphere dynamics are uncorrelated, the structure factor is uniform

in wave vectors until reaching qmax ∼ ρ1/3
s , associated with the typical intersphere distance. Hence,

we obtain the following structure factor of the internal density of the breathing spheres X :

Sbreath
X (q, ω) ≈ 18γ kBT

mR2
0

1

(γω)2 + ω4
0

(2π )3

Vq
θ (qmax − q), (27)
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(a) (b) (c)

Wave vector µm

FIG. 2. Fluctuation-induced permeability modification K/K0 for various fluctuation spectra SX of the
matrix. (a) Across a breathing medium with sphere volume fraction c0 as a function of the characteristic
frequency ω0/2π . Inset: Schematic of the model. (b) Across a fluctuating porosity with phonon-like modes
as a function of the characteristic frequency ω0/2π for dispersionless optical phonons (bottom axis) and as a
function of the sound velocity c for propagating acoustic phonons (top axis). Inset: Molecular dynamics image
of water in a zeolite. In (a), (b), the solid fluctuations are thermal with temperature T = 300 K. (c) Across an
actively forced solid matrix as function of the forcing frequencies � and wave vector q0.

where θ is the Heaviside distribution and Vq = 4π
3 q3

max.
We can then compute analytically the correction to the friction coefficient from Eqs. (17) and

(18) as

�ξ = 45ρsξ
2
1 kBT

2mω2
0νq2

maxR2
0

[
1 − arctan(qmax�(ω0))

qmax�(ω0)

]
, (28)

where

�(ω0)2 = ν

ξ0 + ω2
0/γ

(29)

is a viscous diffusive length. Finally, the renormalized permeability of the system simply rewrites
in the case of small fluctuations 〈r2〉 = kBT/mω2

0:

K
K0

� 1 + 45ξ 2
1

2ξ0νq2
max

〈r2〉
R2

0

[
1 − arctan[qmax�(ω0)]

qmax�(ω0)

]
. (30)

The results for the breathing frequency dependence of the permeability are shown in Fig. 2(a). For
ω0 → 0, the excess permeability is directly proportional to the root mean square (RMS) of the
matrix radius as �K/K0 ∝ 〈r2〉/R2

0, recovering the quasistatic result as expected. For large ω0 such
that qmax�(ω0) � 1, Eq. (30) reduces to

K
K0

� 1 + 15ξ 2
1

2ξ 2
0

〈r2〉
R2

0

1

1 + ω2
0/γ ξ0

, (31)

which decays like 1/ω2
0. For ω0 → ∞, the dynamics of the liquid no longer couples with the

hydrodynamics and the permeability enhancement vanishes.

B. Permeability across a fluctuating porosity with phonon-like modes

Beyond the previous simple model, the solid matrix dynamics usually exhibit more complex
dynamical features, such as (optical or acoustic) phonons. Acoustic phonons describe propagating
waves, while optical phonons are associated with (nearly) dispersionless breathing. Phonon modes
are rooted in the dynamics of the displacement field of the porous matrix, say u, and the parameter
X is accordingly defined as the normalized density of the matrix as X = −∇ · u. It is now a time-
and space-dependent fluctuating quantity. The fluctuation of the density will affect accordingly the
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pore size of the porous medium, hence the Darcy friction. As a rule of thumb, let us consider a
dense porous material with a typical pore size R. The fluctuation of the density will therefore affect
the pore radius as R = R0(1 + 1

3 X ). The Darcy friction stems from the viscous flow inside the
porosity and should accordingly scale as ξ ∝ 1/R2. The friction thus writes ξ (X ) = ξ0 + ξ1X with
ξ1 = −(2/3)ξ0 in this case. In a porous material with a more complex structure, coefficients may
differ but a similar linear expansion of ξ (X ) is expected.

We now turn to the structure factor and first consider acoustic phonons with sound velocity c. We
consider a classical phonon description in terms of springs separating atoms of mass m with drag
coefficient γ , and the dynamical equation governing the displacement field u reads in the continuous
limit

m∂2
t u = −mγ ∂t u + mc2∇2u − ∇Vext, (32)

with Vext an external potential. Hence going to Fourier space, we deduce the response function for
X as

X (q, ω) = 1

m

q2

ω2 − q2c2 + iγω
Vext (q, ω), (33)

and the fluctuation-dissipation theorem gives

Sph
X (q, ω) = 2kBT m

ωρs
m

Im

(
1

m

q2

ω2 − ω2
q + iγω

)
, (34)

with ωq = c q for acoustic phonons and ρs
m is the global mass density of the solid. Taking the

limit γ → 0 leads us to the simplified form for the structure factor associated with phonon-like
excitations

Sph
X (q, ω) = πkBT q2

ρs
mω2

δ(ω ± ωq). (35)

In the following we will assume that the wave vector q is limited by the interatomic distance a, i.e.,
q � qmax = 2π/a. For optical phonons, one finds the same expression except that the dispersion
relation is now ωq = ω0, where ω0 is the constant optical phonon frequency.

In the quasistatic limit, one can deduce the permeability deviation �K/K in terms of the RMS
of the parameter X . The latter is given by

〈X 2〉 =
∫ ∞

0
dω

∫ qmax

0
dq q2 Sph

X (q, ω). (36)

A straightforward analytical evaluation of these integrals leads to the quasistatic estimate for
acoustic phonons

K � K0

(
1 + 2q3

max

27π2ρs
mc2

kBT

)
. (37)

Of note, we find a permeability enhancement which scales with 1/c2. This is originates in the
contribution of lower-energy phonon states which are more populated at a given temperature.

Now beyond the quasistatic regime, Eqs. (17) and (18) allows us to calculate the renormalized
permeability K/K0 using the full expression for the X spectrum. The results for the permeability as
a function of the phonon frequency are shown in Fig. 2(b): the permeability is plotted as a function
of the frequency ω0 for the optical phonons (bottom axis) and as a function of the sound velocity
c for the acoustic phonons (top axis). In both cases, we find a strong permeability enhancement for
soft solid matrices, associated with low-frequency modes or low sound velocity. While this follows
the same trend as in the quasistatic limit, we find important quantitative corrections in the general
case due to the dynamical contribution of the overlap between the phonon modes of the matrix and
the hydrodynamic modes which do strongly increase the permeability.

014201-8



HYDRODYNAMIC PERMEABILITY OF FLUCTUATING …

C. Permeability across an actively forced solid matrix

Finally, the solid may be subject to an active external forcing at a frequency � and (isotropic)
spatial wave vector q0. The effective structure factor of the fluctuations writes accordingly

Sact
X (q, ω) = (2π )2 A

ρ
2/3
s

δ(ω − �)δ(q − q0), (38)

where ρs is the solid particle density and A is an dimensionless amplitude of the forcing. The
resulting permeability enhancement is shown in Fig. 2(c) for a range of frequencies and wavevectors
of the external active forcing [the value ξ1 = −(2/3)ξ0 was assumed for simplicity]. We observe a
permeability enhancement in a broad region of the frequency wave-vector space. The amplification
is maximum for large q0, for which the viscous frequency νq2

0 dominates over the bare friction ξ0.
In contrast, the effect disappears for large frequency �, as the fluid decouples from the forcing.
Altogether, it appears possible to enhance the permeability of a porous matrix through an external
forcing with well-chosen wavelength and frequency.

V. CONCLUSION

Using perturbation theory of a fluctuating Darcy equation, we have shown that the matrix fluctua-
tions renormalize the fluid permeability as they couple to hydrodynamic modes. In a counterintuitive
way, this renormalization effect increases the flow permeability in the models under scrutiny. Our
model is minimal in terms of assumption and merely serves as an illustration to show the effect of
matrix fluctuations. While corrections to our minimal model may reduce the effect—and perhaps
even lead to a permeability reduction in some cases—our results nevertheless reveal that fluctuations
of a porous matrix can modulate significantly its permeability to fluid flow and provides insights in
the phenomenology and ingredients at play. Indeed, we find that the permeability enhancement is
optimal in the case of frequency matching between the modes of the solid and the hydrodynamic
fluctuations of the fluid. By exploring elementary models of solid that describe their thermal
fluctuations (breathing, phononic), we also provide hints as to the link between the microscopic
characteristics of the porous matrix and its hydrodynamic permeability. Furthermore, we show
that an external forcing could also be used to control and increase the permeability by exciting
well-chosen modes in the solid. For specific systems, numerical molecular dynamics simulations
that account for solid fluctuations successfully explored the modulation of ionic diffusion, and
could be extended to study mass transport, providing valuable quantitative estimates of permeability
modulation.

Beyond our model, it would be interesting to extend such formalism to account for a more general
framework of the solid’s fluctuations, including coupling to the liquid’s volume, correlation with
hydrodynamic fluctuations and non-Gaussian correlations. In terms of systems, it would be also
interesting to investigate the individual and collective motion of penetrants in fluctuating anisotropic
(polymer or glass-forming) matrices [22,37].

Overall, our results provide a new direction of research for nanofluidics and suggest new
strategies for improving the efficiency of membranes. Indeed, exploiting membrane fluctuations
seems to be a promising and unexplored lever to circumvent the permeability-selectivity trade-off
that hinders membrane-based separation technologies.
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APPENDIX A: PERTURBATION THEORY FOR THE RENORMALIZED PERMEABILITY
AND VISCOSITY

We provide some details of the calculation described in Sec. III B.
As shown in Sec. III B, the self-energy takes the expression

�(q, ω) = ξ 2
1

∫
dq̄dω̄

(2π )4
G0

v(q̄, ω̄)SX (q − q̄, ω − ω̄)J(q)J(q̄)J(q), (A1)

where we recall that the projector matrix is defined as J = Id − qq/q2. Note that we use the identity
J2 = J. The self-energy is in general a matrix in spatial coordinates.

We can simplify this expression by noting that the self-energy reduces to a multiple of J(q) for
isotropic systems. Indeed, we can define spherical coordinates around the direction of q and explicit
the effect of the self-energy matrix on a generic vector w = (w θw 0)sph. Here we have fixed
ϕ according to the direction of w. We denote q̄ = (q̄ θ̄ ϕ̄)sph. Then, in the associated Cartesian
coordinates we have

J(q)J(q̄)J(q)w = w cos(θw ) × (0 1 − cos(θ̄ )2 cos(ϕ̄)2 − cos(θ̄ )2 cos(ϕ̄) sin(ϕ̄))Cart. (A2)

Since the system is isotropic, G0
v and SX only depend on the norms of q̄ and q − q̄. In particular,

they do not depend on ϕ̄. Thus averaging on ϕ̄ we obtain

〈J(q)J(q̄)J(q)w〉ϕ̄ = w cos(θw ) × (
0 1 − 1

2 cos(θ̄ )2 0
)

Cart = (
1 − 1

2 cos(θ̄ )2
)
J(q)w. (A3)

Therefore, the projector J(q) being already present in Eq. (12), we can see the self-energy as a scalar
function

�(q, ω) = ξ 2
1

∫
dq̄dω̄

(2π )4

[
1 − 1

2

(
q · q̄
qq̄

)2
]

G0
v(q̄, ω̄)SX (q − q̄, ω − ω̄). (A4)

Relaxing the incompressibility assumption, we would have a similar result with a more complicated
and frequency-dependent additional geometrical factor. Now, for q � q̄ the isotropic function
SX (q − q̄, ω − ω̄) no longer depends on the angle q · q̄ and the geometrical factor 1 − 1

2 ( q·q̄
qq̄ )2

reduces to 5
6 upon integration.

As shown in the main text, the renormalized Green’s function of the flow then takes the
expression

Gv(q, ω) = 1

G0
v(q, ω)−1 − �(q, ω)

= 1

q2ν + ξ0 − �(q, ω) − iω
. (A5)

By isotropy, we can expand the self-energy as a function of q:

�(q, ω) = �(q = 0, ω) + 1
2∂2

q �(q = 0, ω)q2 + · · · . (A6)

The quadratic term provides the correction to the viscosity at small frequency. Note that the
geometrical factor 1 − 1

2 ( q·q̄
qq̄ )2 depends only on the angle between q and q̄ but not on the norm

q. Thus, we obtain

�ξ = �(0, 0) = 5

6
ξ 2

1

∫ ∞

0

dqdω

2π3
q2SX (q, ω)Re

[
G0

v(q, ω)
]
, (A7)

�η = 1

2
∂2

q �(q = 0, 0) = 5

6
ξ 2

1

∫ ∞

0

dqdω

4π3
q2SX (q, ω)∂2

q Re
[
G0

v(q, ω)
]
. (A8)

The resulting viscosity deviation vanishes for the model of breathing, which happens at q = 0, and
is small for the other models as shown in Fig. 3.
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(a) (b)

FIG. 3. Fluctuation-induced viscosity deviation �ν/ν0 for various fluctuation spectra SX of the matrix.
(a) Across a fluctuating porosity with phonon-like modes as a function of the sound velocity c for propagating
acoustic phonons. The solid fluctuations are thermal with temperature T = 300 K. (b) Across an actively forced
solid matrix as function of the forcing frequencies � and wave vector q0.

APPENDIX B: NUMERICAL COMPUTATIONS

The numerical parameters used to obtain the plots given in the main text are summarized in
Table I.

TABLE I. Parameters used in numerical computations.

Liquid T = 300 K
ν = 10−6 m2 s−1

ρm = 103 kg/m3

Breathing spheres R0 = 1 nm
c = 4

3 πR3ρs

qmax = ρ1/3
s

γ = 106 s−1

m = 10−14 kg
α = 1.7601

η = 10−3 Pa s

Phonons ξ0 = 4 × 1010 s−1

ξ1 = − 2
3 ξ0

ρs
m = 2.25 × 103 kg/m−3

qmax = 2π/a, a = 1 Å

Forcing ρs = 1018 m−3

A = 10−3
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