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1 Phase space: a simple example. Consider the simple dynamics of a mass attached to a spring (k > 0
and m > 0),

mẍ+ kx = 0, (1)

even though this system exhibits a trivial solution in terms of harmonic functions, we will here see how we can
build intuition for the behavior of the solutions without explicitly solving for x(t). This will become specially
valuable when dealing with more complex dynamics for each analytical solutions are unattainable.

1. The state of a deterministic dynamical system is composed of the set of variables that uniquely determines
the future states of the system. In other words, the phase space variables evolve according to first order
differential equations. Identify ẋ = v to rewrite Eq. 1 as a system of first order ODEs.

2. The equations of motion assign a vector (ẋ, v̇) at each point (x, v) in the phase plane, representing a
vector field. Sketch the vector field as well as some example solutions in the phase-plane (x, v).

3. Find a parametric expression for the oscillatory orbits of the system. How does this relate to the notion
of energy?

Correction

1. Identifying the velocity v = ẋ we get, 
ẋ = v

v̇ = − k
mx.

2. Just evaluate the vector (ẋ, v̇) at a few examplar (x, v) points for intuition. The vector field winds around
the origin in a clockwise fashion. At the origin we have a stable fixed point.

3. From 2), you’ve seen that the system admits oscillatory solutions that define a elliptical trajecotry in the
phase space. To parameterize it, we need to find a relationship between x and v. In order to do that, we
divide v̇ by ẋ and solve by separation of variables,

v̇

ẋ
=

dv

dx
=

− k
mx

v
mv dv = −kx dx

mv2

2
= −kx2

2
+ E

E =
kx2

2
+

mv2

2
,

where we can see E corresponds to the energy of the system (kinetic + potential), which is a constant
along the attractor of this Hamiltonian, energy-preserving, system.

2 Phase space: general linear dynamics on the plane. Consider now the general setting of a system
of linear ODEs, 

ẋ1 = ax1 + bx2

ẋ2 = cx1 + dx2,
(2)

with general solution x(t) = eλtv.

1. Find the characteristic equation to solve for λi in terms of the trace τ and the determinant ∆ of the
Jacobian Aij = ∂ẋi/∂xj .

2. Assuming λ1 ∕= λ2 nonzero eigenvalues, write the general solution to Eq. 2.

3. Draw the trajectories of the phase space with,
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Figure 1: Solutions to problem 2). Figures extracted from [1].

(a) λ2 < −λ1 < 0 (saddle node)

(b) λ2 < λ1 < 0 and λ1 > λ2 > 0 (stable/unstable node)

(c) τ2 − 4∆ < 0 and τ = 0 (center)

(d) τ2 − 4∆ < 0 and τ ∕= 0 (stable and unstable spiral)

4. Discuss the case when λ1 = λ2.

5. Sketch a phase diagram in the τ −∆ plane with the different behaviors of the solutions to Eq. 2.

Correction

1. Substituting x(t) = eλtv into �̇�x = Ax we get,

λeλtv = Aeλtv

λv = Av,

and so λ and v are the eigenvalues and eigenvectors of the Jacobian A and so x(t) = eλtv is an eigensolution.
Therefore we can write down the characteristic equation,

det


a− λ b
c d− λ


= 0,

which solves to

λ1,2 =
τ ±

√
τ2 − 4∆

2
,

where τ = a+ d and ∆ = ad− bc are the trace and the determinant respectively.

2. When λ1 ∕= λ2 the corresponding eigenvectors are linearly independent, meaning that any initial condition
can be written as a linear combination of eigenvectors x0 = c1v1 + c1v2, which allows us to write down
the general solution as

x(t) = c1e
λ1tv1 + c2e

λ2tv2.

x(t) is the general solution because it is a linear combination of solutions to �̇�x = Ax and thus is itself a
solution. In addition, it satisfies the initial condition x(0) = x0 and so by the existence and uniqueness
theorem it is the only solution.

3. The solution is in Fig. 1. Note that trajectories become parallel to the slow eigendirection.

4. If the eigenvalues are the same, then there are either two linearly independent eigenvectors, or only one.
The number of linearly independent eigenvectors associated with an eigenvalue λ for an n × n matrix is

given by dim(Es) = n− rank


a b
c d


− λ1n


. If there are two linearly independent eigenvectors, they

span the entire space and every vector is an eigenvector with the same eigenvalue λ = λ1 = λ2. In this
case A must be a multiple of the identity matrix, A = λ1. Then if λ ∕= 0 all trajectories are straight lines
through the origin and the fixed point is a star or proper node, Fig. 1. If λ = 0 then the whole phase
space is filled with fixed points (�̇�x = 0). If there is only one eigenvector, then we call the node degenerate
or improper node. In this case, additional linearly independent eigenvectors must be constructed to
write down a general solution 1. An example of a phase space portrait near an improper/degenerate node

1The general solution for a two-dimensional problem may be written as x(t) = c1ηe
λt + c2


ηteλt + ρeλt


; with ρ solving

a b
c d


− λ1n


ρ = η. You can check that two solutions are linearly independent by applying


a b
c d


− λ1n


to x(t) = 0.

The structure of the second independent solution causes the quasi-spirals in Fig. 1: one follows the eigenvector η only in the long-time
limit where the term c2tηe

λt dominates; at early times one follows different directions depending on the initial conditions.
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is shown in Fig. 1. The imaginary part of λ vanishes for τ2 − 4∆ ≥ 0, hence the spiralling velocity of a
(stable or unstable) focus vanishes continuously as τ2−4∆ → 0−. I’d recommend plotting some solutions
to get intuition.

5. See Fig. 1.

3 Fixed points and linearization: a model of species competition. Consider the system

ẋ = f(x, y)

ẏ = g(x, y)
(3)

and suppose that (x∗, y∗) is a fixed point: f(x∗, y∗) = 0 and g(x∗, y∗) = 0. Let x = x − x∗ and y = y − y∗

denote small perturbations away from the fixed point. To know whether the fixed point is stable, we focus on
the vicinity of the fixed point and follow the evolution of such perturbations.

1. Derive �̇�x and �̇�y up to second order to find�̇� = A. We thus obtain the linearized dynamics in the vicinity
of the fixed point, which we can analyse with the methods of Problem 1.

Consider now that x and y represents the population of small and big fish, respectively. Assume that the
population of small fish grows at a constant rate µ while that of the big fish decays with a rate ν if they don’t
feed on the small fish.

2. Argue that under these assumptions f(x, y) = µx− axy and g(x, y) = −νy+ bxy. What do the constants
a and b represent?

3. Find the fixed points of this system and analyze their linear stability. Interpret the fixed points.

4. Draw exemplar solutions in the phase space and discuss their qualitative behavior.

5. If fisherman are catching both species of fish at the same rate, how are their relative steady-state popu-
lations affected?

Correction

1. Let’s derive for x,

x = ẋ (since x∗ is a constant)

= f(x∗ + x, y
∗ + y) (by substitution)

= f(x∗, y∗) + x
∂f

∂x
+ y

∂f

∂y
+O(2x, 

2
y, xy) (Taylor expand)

= x
∂f

∂x
+ y

∂f

∂y
+O(2x, 

2
y, xy) (sincef(x∗, y∗) = 0)

The solution for y is equivalent, yielding


�̇�x
�̇�y


=


∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y


x
y


+ (quadratic terms)

2. f(x, y) = x(µ − ay) and f(x, y) = y(bx − ν). The growth the population of small fish is lower the
larger the population of large fish, reducing the growth rate by an amount proportional to y, giving axy.
Similarly, the population of large fish grows proportionally to the population of small fish x, resulting in
the nonlinear term bxy. a thus represents how much the population of small fish decays when its predated
and b represents how the population of large fish grows when it can successfully predate.

3. To find the fixed points, we compute

ẋ = x(µ− ay) = 0

ẏ = y(−ν + bx) = 0,

and so (x∗1, y
∗
1) = (0, 0)


(x∗2, y

∗
2) = (ν/b, µ/a) are the fixed points. The linear stability is obtained by

looking at the eigenvalues of the Jacobian matrix at the fixed points,

A =


µ− ay −ax
by bx− ν


.

For (x∗1, y
∗
1) = (0, 0) we have A =


µ 0
0 −ν


, so the eigenvalues are λ1 = µ and λ2 = −ν and we are

in presence of a saddle node: the flow points towards the original in the vertical direction and away

from it in the horizontal direction. For (x∗2, y
∗
2) = (ν/b, µ/a) we have A =


0 −aν/n

bµ/a 0


, which gives

λ1,2 = ±i
√
µν which corresponds to a center, an oscillatory solution around (x∗2, y

∗
2).
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Figure 2: Vector field and example trajectories for the population dynamics of problem 3.4). In this case, µ > ν.

4. The relative steady-state populations are given by
x∗
2

y∗2
= a

b
ν
µ . If fisherman are catching both species at the

same rate, that modifies the equations of motion to


ẋ = x(µ− δ)− axy

ẏ = y(−ν − δ) + bxy,

implying that the steady-state populations are modified as,

x∗2
y∗2

=
a

b

ν

µ
→ a

b

ν + δ

µ− δ
,

which increases with increasing δ. Therefore, if the fishing occurs at a constant rate δ for both species,
the population of big fish y is impacted the most.
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