ICFP M1 - DYNAMICAL SYSTEMS AND CHAOS - TD n°2&3 - Exercises The Method of Multiple Scales

Baptiste Coquinot, Stephan Fauve baptiste.coquinot@ens.fr

2023-2024

1 Weakly damped harmonic oscillator. We will start with an example that can be solved exactly to build intuition about the method of multiple scales. Consider the weakly damped linear oscillator $(0 < \epsilon \ll 1)$,

$$\ddot{x} + 2\epsilon \dot{x} + \omega_0^2 x = 0,\tag{1}$$

with initial conditions x(0) = 0 and $\dot{x}(0) = 1$. Consider $\omega_0^2 = 1$ without loss of generality.

- 1. Show that the exact solution to this problem is $x(t, \epsilon) = (1 \epsilon^2)^{-1/2} e^{-\epsilon t} \sin \left[\sqrt{1 \epsilon^2} t\right]$. Identify the **two** main time scales of the system.
- 2. We will now introduce the method of multiple scales. Let us define a new slow timescale $T_1 = \epsilon t$, which we will assume to be constant with regard to the fast time scale $\tau = t$. In general, we can have N slow time scales and rewrite x(t) as $x(\tau, T_1, \ldots, T_N)$. Show that up to $\mathcal{O}(\epsilon^2)$, we can rewrite Eq. 1 as,

$$\frac{\partial^2 x}{\partial \tau^2} + x = -2\epsilon \frac{dx}{d\tau} - 2\epsilon \frac{d^2 x}{d\tau dT_1} + \mathcal{O}(\epsilon^2)$$

3. Expand the solution to Eq. 1 as a series to find,

$$\frac{\partial^2 x_0}{\partial \tau^2} + \epsilon \left(\frac{\partial^2 x_1}{\partial \tau^2} + 2 \frac{\partial^2 x_0}{\partial T_1 \tau} \right) + 2\epsilon \frac{\partial x_0}{\partial \tau} + x_0 + \epsilon x_1 + \mathcal{O}(\epsilon^2) = 0$$

- 4. Use the solvability condition at $\mathcal{O}(1)$ to find that $x_0 = A \sin \tau + B \cos \tau$. Note that the "constants" A and B are actually functions of the slow time scale T_1 .
- 5. Determine $A(T_1)$ and $B(T_1)$ by going to next order in ϵ and getting rid of resonant terms.
- 6. Use the initial conditions to find the approximation,

$$x = e^{-\epsilon t} \sin t + \mathcal{O}(\epsilon).$$

- 7. Compare this with the exact solution of 1.1). The damping term actually has two effects: it dampens the oscillation amplitude, but also creates a shift in frequency. On what timescale do they occur?
- 2 Nonlinear oscillations: the van der Pol oscillator Consider the van der Pol oscillator,

$$\ddot{x} + (x^2 - \alpha)\dot{x} + \omega_0^2 x = 0$$
(2)

- 1. Perform linear stability analysis in the vicinity of the stationary solutions and draw the phase space for $\alpha > 0$ and $\alpha < 0$.
- 2. Find the evolution equation for the energy of the oscillator $E = \frac{v^2}{2} + \frac{\omega_0^2 x^2}{2}$, where $v = \dot{x}$. Show that the origin is globally stable for $\alpha < 0$?
- 3. For $\alpha > 0$ linear stability analysis predicts exponential growth of the oscillations, but this is eventually stopped by the non-linear term $(x^2 \alpha)$. Consider that for small $\alpha > 0$ (just after the bifurcation point) there is a nonlinear limit cycle that is very close to a linear harmonic oscillator, such that we can approximate x(t) as $x(t) \sim a \sin(\omega t + \phi)$. Considering the energy balance over one cycle, determine how the amplitude of the oscillations a scales with α .
- 4. Show that for a periodic solution of Eq. 2 one has

$$\left\langle \dot{x}^2 \right\rangle = \omega_0^2 \langle x^2 \rangle,\tag{3}$$

where $\langle \cdot \rangle$ stands for time averaging.

5. A second role of the non-linearity is the production of higher harmonics and the deviation from the fundamental frequency. To see that, consider now a more general periodic solution of the form,

$$x(t) = \sum_{n} a_n \sin(n\omega t + \phi_n).$$

Give the expression of ω as a function of ω_0 and the amplitudes a_n of the harmonics. In what parameter range is the sinusoidal approximation used in question 2.3) valid?

- 6. We now consider the van der Pol oscillator but in the limit of large α . Make the change of variables $x(t) = \sqrt{\alpha} \frac{dy}{dt}$ in Eq.2 and integrate the equation. Explain why the constant of integration can be taken equal to 0.
- 7. Defining $T = t/\alpha$, $u(T) = y(t)/\alpha$, $v = \frac{du}{dT}$, write down the differential equations for u and v.
- 8. Show that for $\alpha \to \infty$, the system involves two time scales. Find a relation u = f(v) for which the two time scales are comparable.
- 9. Plot the **nullcline** u = f(v) in the phase plane (u, v) and draw some example trajectories.
- 10. Compute the leading order approximation of the period of these relaxation oscillations in the limit $\alpha \to \infty$.