ICFP M1 - Dynamical Systems and Chaos - TD nº2\&3 - Solutions The Method of Multiple Scales

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Weakly damped harmonic oscillator. We will start with an example that can be solved exactly to build intuition about the method of multiple scales. Consider the weakly damped linear oscillator $(0<\epsilon \ll 1)$,

$$
\begin{equation*}
\ddot{x}+2 \epsilon \dot{x}+\omega_{0}^{2} x=0, \tag{1}
\end{equation*}
$$

with initial conditions $x(0)=0$ and $\dot{x}(0)=1$. Consider $\omega_{0}^{2}=1$ without loss of generality.

1. Show that the exact solution to this problem is $x(t, \epsilon)=\left(1-\epsilon^{2}\right)^{-1 / 2} e^{-\epsilon t} \sin \left[\sqrt{1-\epsilon^{2}} t\right]$. Identify the two main time scales of the system.
We can rewrite Eq. 1 as a system of first order ODEs in the ($x, \omega=\dot{x}$) phase space,

$$
\left\{\begin{array}{l}
\dot{x}=\omega \\
\dot{\omega}=-x-2 \epsilon \omega,
\end{array}\right.
$$

which we can solve with the methods of TD1. Identifying $A=\left(\begin{array}{cc}0 & 1 \\ -1 & -2 \epsilon\end{array}\right)$, we find that the eigenvalues $\lambda=-\epsilon \pm i \sqrt{1-\epsilon^{2}}$, from which we can already deduce that for $0<\epsilon \ll 1$ the dynamics is a very slowly decaying spiral. To write down a full solution we need also the eigenvectors, which we can obtain by

$$
\left(\begin{array}{cc}
-\lambda & 1 \\
-1 & -2 \epsilon-\lambda
\end{array}\right)\binom{v_{x}}{v_{\omega}}=0 \Rightarrow v_{\omega}=\lambda v_{x} .
$$

Recalling the results of TD1, we find,

$$
\begin{aligned}
\binom{x(t)}{\omega(t)} & =c_{1} e^{\lambda_{1} t} \overrightarrow{v_{1}}+c_{2} e^{\lambda_{2} t} \overrightarrow{v_{2}} \\
& =c_{1} e^{\left(-\epsilon+i \sqrt{1-\epsilon^{2}}\right) t}\binom{1}{-\epsilon+i \sqrt{1-\epsilon^{2}}}+c_{2} e^{\left(-\epsilon-i \sqrt{1-\epsilon^{2}}\right) t}\binom{1}{-\epsilon-i \sqrt{1-\epsilon^{2}}} .
\end{aligned}
$$

Plugging in the initial conditions $x(0)=0$ and $\omega(0)=1$, we find,

$$
\begin{aligned}
& 0=c_{1}+c_{2} \\
& 1=\left(-\epsilon+i \sqrt{1-\epsilon^{2}}\right) c_{1}+\left(-\epsilon-i \sqrt{1-\epsilon^{2}}\right) c_{2}
\end{aligned}
$$

which yields

$$
\begin{aligned}
c_{2} & =-c_{1} \\
1 & =\epsilon c_{2}-i \sqrt{1-\epsilon^{2}} c_{2}-\epsilon c_{2}-i \sqrt{1-\epsilon^{2}} c_{2} \Rightarrow c_{2}=\frac{-1}{2 i \sqrt{1-\epsilon^{2}}} .
\end{aligned}
$$

Putting everything together we find,

$$
\begin{aligned}
& x(t)=e^{-\epsilon t} \frac{1}{2 i \sqrt{1-\epsilon^{2}}}\left[e^{i \sqrt{1-\epsilon^{2}} t}-e^{-i \sqrt{1-\epsilon^{2}} t}\right] \\
& x(t)=e^{-\epsilon t}\left(1-\epsilon^{2}\right)^{-1 / 2} \sin \left(\sqrt{1-\epsilon^{2}} t\right),
\end{aligned}
$$

using Euler's formula. As expected, $x(t)$ exhibits a fast oscillatory time scale $t \sim \mathcal{O}(1)$ and a slower time scale $t \sim 1 / \epsilon$ over which the amplitude of the oscillations decay.
2. We will now introduce the method of multiple scales. Let us define a new slow timescale $T_{1}=\epsilon t$, which we will assume to be constant with regard to the fast time scale $\tau=t$. In general, we can have N slow time scales and rewrite $x(t)$ as $x\left(\tau, T_{1}, \ldots, T_{N}\right)$. Show that up to $\mathcal{O}\left(\epsilon^{2}\right)$, we can rewrite Eq. 1 as,

$$
\frac{\partial^{2} x}{\partial \tau^{2}}+x=-2 \epsilon \frac{d x}{d \tau}-2 \epsilon \frac{d^{2} x}{d \tau d T_{1}}+\mathcal{O}\left(\epsilon^{2}\right)
$$

The time derivatives can be expanded using the chain rule, yielding

$$
\dot{x}=\frac{\partial x}{\partial \tau}+\epsilon \frac{\partial x}{\partial T_{1}}+\mathcal{O}\left(\epsilon^{2}\right),
$$

and,

$$
\ddot{x}=\frac{\partial^{2} x}{\partial \tau^{2}}+2 \epsilon \frac{\partial^{2} x}{\partial \tau \partial T_{1}}+\mathcal{O}\left(\epsilon^{2}\right) .
$$

Plugging this into Eq. 1 we find,

$$
\frac{\partial^{2} x}{\partial \tau^{2}}+x=-2 \epsilon \frac{\partial^{2} x}{\partial \tau \partial T_{1}}-2 \epsilon \frac{\partial x}{\partial \tau}+\mathcal{O}\left(\epsilon^{2}\right)
$$

3. Expand the solution to Eq. 1 as a series to find,

$$
\frac{\partial^{2} x_{0}}{\partial \tau^{2}}+\epsilon\left(\frac{\partial^{2} x_{1}}{\partial \tau^{2}}+2 \frac{\partial^{2} x_{0}}{\partial T_{1} \tau}\right)+2 \epsilon \frac{\partial x_{0}}{\partial \tau}+x_{0}+\epsilon x_{1}+\mathcal{O}\left(\epsilon^{2}\right)=0
$$

Writing $x(t, \epsilon)=x_{0}(t)+\epsilon x_{1}(t)+\epsilon_{2} x_{2}(t)+\ldots$, we get,

$$
\begin{array}{r}
\frac{\partial^{2} x_{0}}{\partial \tau^{2}}+x_{0}+\epsilon \frac{\partial^{2} x_{1}}{\partial \tau^{2}}+\epsilon x_{1}=-2 \epsilon \frac{\partial^{2} x_{0}}{\partial \tau \partial T_{1}}-2 \epsilon \frac{\partial x_{0}}{\partial \tau}+\mathcal{O}\left(\epsilon^{2}\right) \\
\frac{\partial^{2} x_{0}}{\partial \tau^{2}}+\epsilon\left(\frac{\partial^{2} x_{1}}{\partial \tau^{2}}+2 \epsilon \frac{\partial^{2} x_{0}}{\partial \tau d T_{1}}\right)+2 \epsilon \frac{\partial x_{0}}{\partial \tau}+x_{0}+\epsilon x_{1}+\mathcal{O}\left(\epsilon^{2}\right)=0 .
\end{array}
$$

4. Use the solvability condition at $\mathcal{O}(1)$ to find that $x_{0}=A \sin \tau+B \cos \tau$. Note that the "constants" A and B are actually functions of the slow time scale T_{1}.
Collecting powers of ϵ yields a pair of differential equations

$$
\begin{aligned}
& \mathcal{O}(1): \frac{\partial^{2} x_{0}}{\partial \tau^{2}}+x_{0}=0 \\
& \mathcal{O}(\epsilon): \frac{\partial^{2} x_{1}}{\partial \tau^{2}}+2 \frac{\partial^{2} x_{0}}{\partial \tau \partial T_{1}}+2 \frac{\partial x_{0}}{\partial \tau}+x_{1}=0
\end{aligned}
$$

From which we can see that at $\mathcal{O}(\epsilon)$ we have a simple harmonic oscillator equation with solution $x_{0}=$ $A \sin \tau+B \cos \tau$.
5. Determine $A\left(T_{1}\right)$ and $B\left(T_{1}\right)$ by going to next order in ϵ and getting rid of resonant terms.

Replacing x_{0} into the $\mathcal{O}(\epsilon)$ equation we have the terms,

$$
\begin{aligned}
\frac{\partial x_{0}}{\partial \tau} & =A \cos \tau-B \sin \tau \\
\frac{\partial^{2} x_{0}}{\partial T_{1} \partial \tau} & =\partial_{T_{1}} A \cos \tau-\partial_{T_{1}} B \sin \tau
\end{aligned}
$$

yielding,

$$
\begin{array}{r}
\frac{\partial^{2} x_{1}}{\partial \tau^{2}}+2\left(\partial_{T_{1}} A \cos \tau-\partial_{T_{1}} B \sin \tau\right)+2(A \cos \tau-B \sin \tau)+x_{1}=0 \\
\frac{\partial^{2} x_{1}}{\partial \tau^{2}}+x_{1}=-2\left(\partial_{T_{1}} A+A\right) \cos \tau+2\left(\partial_{T_{1}} B+B\right) \sin \tau
\end{array}
$$

We get rid of resonant terms to avoid the blowing up of solutions ${ }^{1}$. In order to do that, we need to set $\partial_{T_{1}} A+A=0$ and $\partial_{T_{1}} B+B=0$, yielding,

$$
\begin{aligned}
& A\left(T_{1}\right)=A(0) e^{-T_{1}} \\
& A\left(T_{2}\right)=A(0) e^{-T_{2}}
\end{aligned}
$$

6. Use the initial conditions to find the approximation,

$$
x=e^{-\epsilon t} \sin t+\mathcal{O}(\epsilon) .
$$

[^0]The initial condition for x yields $x(0)=0=x_{0}(0,0)+\epsilon x_{1}(0,0)+\mathcal{O}\left(\epsilon^{2}\right)$, which requires $x_{0}(0,0)=0$ and $x_{1}(0,0)=0$. Similarly, for \dot{x} we have,

$$
\dot{x}(0)=1=\frac{\partial x_{0}(0,0)}{\partial \tau}+\epsilon\left(\frac{\partial x_{0}(0,0)}{\partial T_{1}}+\frac{\partial x_{1}(0,0)}{\partial \tau}\right)+\mathcal{O}\left(\epsilon^{2}\right),
$$

so

$$
\partial_{\tau} x_{0}(0,0)=1
$$

and

$$
\partial_{T_{1}} x_{0}(0,0)+\partial_{\tau} x_{1}(0,0)=0 .
$$

Using the solution $x_{0}=A \sin \tau+B \cos \tau$, we find from $x_{0}(0,0)=0$ that $B(0)=0$ which implies $B(T)=0$, and from $\partial_{\tau} x_{0}(0,0)=1$ that $A(0)=1$ and so $A\left(T_{1}\right)=e^{-T_{1}}$ which yields,

$$
x_{0}\left(\tau, T_{1}\right)=e^{-T_{1}} \sin T_{1}
$$

and therefore,

$$
x(t)=e^{-\epsilon t} \sin t+\mathcal{O}(\epsilon)
$$

7. Compare this with the exact solution of 1.1). The damping term actually has two effects: it dampens the oscillation amplitude, but also creates a shift in frequency. On what timescale do they occur?
Comparing the two solutions we see that the approximate solution fails to capture the $\left(1-\epsilon^{2}\right)^{-1 / 2}$ correction and, more importantly, the manner in which the frequency of the oscillations is shifted slightly from 1. The frequency of the oscillations is $\sqrt{1-\epsilon^{2}} \approx 1-\frac{\epsilon^{2}}{2}$, which means that after a very long time $t \sim \mathcal{O}\left(1 / \epsilon^{2}\right)$ this frequency error will have a large cumulative effects. This is, in fact, a third super-slow time scale, which we could obtain either through higher order corrections in ϵ, or by introducing a slower time scale $T_{2}=\epsilon^{2} t$ to investigate the long-term phase shift caused by the $\mathcal{O}\left(\epsilon^{2}\right)$ error in frequency.

2 Nonlinear oscillations: the van der Pol oscillator Consider the van der Pol oscillator,

$$
\begin{equation*}
\ddot{x}+\left(x^{2}-\alpha\right) \dot{x}+\omega_{0}^{2} x=0 \tag{2}
\end{equation*}
$$

1. Perform linear stability analysis in the vicinity of the stationary solutions and draw the phase space for $\alpha>0$ and $\alpha<0$.
Rewriting Eq. 2 as a system of first order ODEs, we get,

$$
\left\{\begin{aligned}
\dot{x} & =v \\
\dot{v} & =-\omega_{0}^{2} x-\left(x^{2}-\alpha\right) v
\end{aligned}\right.
$$

which admit a fixed point at the origin $\left(x^{*}, v^{*}\right)=(0,0)$. Linearizing about this fixed point we find the jacobian matrix,

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-\omega_{0}^{2} & \alpha,
\end{array}\right)
$$

with eigenvalues $\lambda=\frac{\alpha}{2} \pm \sqrt{\frac{\alpha^{2}}{4}-\omega_{0}^{2}}$. Thus, for $\frac{\alpha^{4}}{4}>\omega_{0}^{2}$ we have real eigenvalues and the fixed point is a stable or unstable node depending on the sign of λ. For $\frac{\alpha^{4}}{4}<\omega_{0}^{2}$ the origin is the focus of a spiral, which is stable from $\alpha<0$ and unstable for $\alpha>0$ (Hopf bifurcation).
2. Find the evolution equation for the energy of the oscillator $E=\frac{v^{2}}{2}+\frac{\omega_{0}^{2} x^{2}}{2}$, where $v=\dot{x}$. Show that the origin is globally stable for $\alpha<0$?
We can write $\dot{E}=\dot{v} v+\omega_{0}^{2} x \dot{x}=\left(\alpha-x^{2}\right) \dot{x}^{2}$. The origin is globally stable when $\alpha<0$ because $\dot{E}<0$: the system dissipates energy over time and eventually decays towards the origin.
3. For $\alpha>0$ linear stability analysis predicts exponential growth of the oscillations, but this is eventually stopped by the non-linear term $\left(x^{2}-\alpha\right)$. Consider that for small $\alpha>0$ (just after the bifurcation point) there is a nonlinear limit cycle that is very close to a linear harmonic oscillator, such that we can approximate $x(t)$ as $x(t) \sim a \sin (\omega t+\phi)$. Considering the energy balance over one cycle, determine how the amplitude of the oscillations a scales with α.
As time goes one, the energy is either growing or decaying depending on the sign of ($\alpha-x^{2}$). For $x<\sqrt{\alpha}$, the energy is positive and the oscillations grow, and when $x>\sqrt{\alpha}$ the energy is negative and the balance between excitation for low x and dissipation for large x leads to a periodic solution. Nonetheless, the energy balance over one cycle requires that over a period T

$$
\begin{aligned}
\frac{1}{T} \int_{0}^{T} \dot{E} d t & =0 \\
\alpha\left\langle\dot{x}^{2}\right\rangle-\left\langle x^{2} \dot{x}^{2}\right\rangle & =0 \\
\alpha \omega^{2} a^{2}\left\langle\cos ^{2}(\omega t+\phi)\right\rangle-\omega^{2} a^{4}\left\langle\sin ^{2}(\omega t+\phi) \cos ^{2}(\omega t+\phi)\right\rangle & =0,
\end{aligned}
$$

using the fact that averaged over one cycle $\left\langle\cos ^{2}(\omega t+\phi)\right\rangle=1 / 2$ and $\left\langle\sin ^{2}(\omega t+\phi) \cos ^{2}(\omega t+\phi)\right\rangle=1 / 8$, we find,

$$
\begin{aligned}
& \alpha \frac{1}{2}-a^{2} \frac{1}{8}=0 \\
& a=2 \sqrt{\alpha} .
\end{aligned}
$$

Another way to find the relationship between a and α is to plug in $x(t)=a \sin (\omega t+\phi)$ into Eq. 2. We get $\dot{x}=\omega a \cos (\omega t+\phi)$ and $\ddot{x}=-\omega^{2} a \sin (\omega t+\phi)$. Using the trigonometric identities $\sin ^{2}(\omega t+\phi)=$ $\frac{1}{2}[1-\cos (2 \omega t+2 \phi)]$ and $\cos (2 \omega t+2 \phi) \cos (\omega t+\phi)=\frac{1}{2}[\cos (3 \omega t+3 \phi)+\cos (\omega t+\phi)]$ we rewrite Eq. 2 as,

$$
\begin{array}{r}
-\omega^{2} a \sin (\omega t+\phi)+\left(a^{2} \sin ^{2}(\omega t+\phi)-\alpha\right) \omega a \cos (\omega t+\phi)+\omega_{0}^{2} a \sin (\omega t+\phi)=0 \\
-\omega^{2} a \sin (\omega t+\phi)+\frac{a^{3}}{2} \omega \cos (\omega t+\phi)-\frac{a^{2}}{4}[\cos (3 \omega t+3 \phi)+\cos (\omega t+\phi)] \\
-\alpha \omega a \cos (\omega t+\phi)+\omega_{0}^{2} a \sin (\omega t+\phi)=0 \\
\sin (\omega t+\phi)\left(\omega_{0}^{2}-\omega^{2}\right)+\omega \cos (\omega t+\phi)\left[\frac{a^{2}}{4}-\alpha\right]-\frac{\omega^{2} a^{2}}{4} \cos (3 \omega t+3 \phi)=0 .
\end{array}
$$

Truncating to eliminate the mode-three term we find $\omega \approx \omega_{0}$ and $a \approx 2 \sqrt{\alpha}$. So the amplitude of the oscillations scales as $a \sim \sqrt{\alpha}$, which we couldn't predict simply from linear stability analysis of the fixed point which predicted only exponential divergence of trajectories.
4. Show that for a periodic solution of Eq. 2 one has

$$
\begin{equation*}
\left\langle\dot{x}^{2}\right\rangle=\omega_{0}^{2}\left\langle x^{2}\right\rangle, \tag{3}
\end{equation*}
$$

where $\langle\cdot\rangle$ stands for time averaging.
Multiplying Eq. 2 by x and taking the average over one period we find,

$$
\begin{array}{r}
x \ddot{x}+x^{3} \dot{x}-\alpha \dot{x} x+\omega_{0}^{2} x^{2}=0 \\
\langle x \ddot{x}\rangle=-\omega_{0}^{2}\left\langle x^{2}\right\rangle,
\end{array}
$$

since the averages over one period of terms involving \dot{x} vanish. Integrating the l.h.s by parts we get,

$$
\begin{aligned}
x \frac{1}{T} \int_{0}^{T} \ddot{x} d t-\frac{1}{T} \int_{0}^{T}\left(\frac{d x}{d t}\right)^{2} d t & =-\omega_{0}^{2}\left\langle x^{2}\right\rangle \\
\left\langle\dot{x}^{2}\right\rangle & =\omega_{0}^{2}\left\langle x^{2}\right\rangle .
\end{aligned}
$$

Notably, this result is formally identical to the virial theorem (avg. kinetic energy $=$ avg. potential energy) found for simple harmonic oscillations, but we have shown that it also applies to oscillations in the presence of a velocity and amplitude-dependent force as described by the van der Pol oscillator.
5. A second role of the non-linearity is the production of higher harmonics and the deviation from the fundamental frequency. To see that, consider now a more general periodic solution of the form,

$$
x(t)=\sum_{n} a_{n} \sin \left(n \omega t+\phi_{n}\right) .
$$

Give the expression of ω as a function of ω_{0} and the amplitudes a_{n} of the harmonics. In what parameter range is the sinusoidal approximation used in question 2.3) valid?
We substitute the periodic ansatz $x(t)=\sum_{n} a_{n} \sin \left(n \omega t+\phi_{n}\right)$ into the virial equation to find,

$$
\sum_{n, m} a_{n} a_{m} n \omega m \omega\left\langle\cos \left(n \omega t+\phi_{n}\right) \cos \left(m \omega t+\phi_{m}\right)\right\rangle=\omega_{0}^{2} \sum_{n, m} a_{n} a_{m}\left\langle\sin \left(n \omega t+\phi_{n}\right) \sin \left(m \omega t+\phi_{m}\right)\right\rangle
$$

The averages of the trignometric functions are given by,

$$
\begin{aligned}
\left\langle\cos \left(n \omega t+\phi_{n}\right) \cos \left(m \omega t+\phi_{m}\right)\right\rangle & =\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \cos \left(n \omega t+\phi_{n}\right) \cos \left(m \omega t+\phi_{m}\right) d t \\
& =\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \frac{1}{2}\left(\cos \left[(n+m) \omega t+\phi_{n}+\phi_{m}\right]+\cos \left[(n-m) \omega t+\phi_{n}-\phi_{m}\right]\right) d t \\
& =\frac{1}{2} \delta_{n, m},
\end{aligned}
$$

and similarly,

$$
\begin{aligned}
\left\langle\sin \left(n \omega t+\phi_{n}\right) \sin \left(m \omega t+\phi_{m}\right)\right\rangle & =\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \sin \left(n \omega t+\phi_{n}\right) \sin \left(m \omega t+\phi_{m}\right) d t \\
& =\frac{\omega}{2 \pi} \int_{0}^{2 \pi / \omega} \frac{1}{2}\left(-\cos \left[(n+m) \omega t+\phi_{n}+\phi_{m}\right]+\cos \left[(n-m) \omega t+\phi_{n}-\phi_{m}\right]\right) d t \\
& =\frac{1}{2} \delta_{n, m} .
\end{aligned}
$$

Thus we find,

$$
\omega=\omega_{0} \sqrt{\frac{\sum_{n} a_{n}^{2}}{\sum_{n} a_{n}^{2} n^{2}}} .
$$

Therefore, when there is only one mode we recover the solution of 2.3), but when higher harmonics are excited we have $\omega<\omega_{0}$. The approximation of 2.3) is thus valid whenever $\sum_{n=2}^{\infty} a_{n}^{2} n^{2} \ll a_{1}^{2}$, so when one mode clearly dominates.
6. We now consider the van der Pol oscillator but in the limit of large α. Make the change of variables $x(t)=\sqrt{\alpha} \frac{d y}{d t}$ in Eq. 2 and integrate the equation. Explain why the constant of integration can be taken equal to 0 .
Substituting $x=\sqrt{\alpha} \dot{y}$ we obtain,

$$
\frac{d}{d t}\left[\frac{d^{2} y}{d t^{2}}+\alpha\left(\frac{1}{3}\left(\frac{d y}{d t}\right)^{3}\right)-\frac{d y}{d t}+\omega_{0}^{2} y\right]=0
$$

which integrates to,

$$
\frac{d^{2} y}{d t^{2}}+\alpha\left(\frac{1}{3}\left(\frac{d y}{d t}\right)^{3}-\frac{d y}{d t}\right)+\omega_{0}^{2} y=C \in \mathbb{R}
$$

As a second-order ODE, the original van der Pol equation needs to be supplemented with two initial conditions for a unique solution, $x(0)=\left.\frac{d y}{d t}\right|_{t=0}=x_{0}$ and $v(0)=\left.\frac{d^{2} y}{d t^{2}}\right|_{t=0}=v_{0}$. Since y can be shifted by any constant without changing x for any x_{0} and v_{0} we may redefine $y \rightarrow y-\frac{1}{\omega_{0}}\left[v_{0}+\lambda\left(x_{0}^{3} / 3-x_{0}\right)\right]$ and therefore ser $C=0$ without loss of generality.
7. Defining $T=t / \alpha, u(T)=y(t) / \alpha, v=\frac{d u}{d T}$, write down the differential equations for u and v.

With a slow time scale $T=t / \alpha, u=y / \alpha$, and $v(T)=\frac{d u}{d T}$ we get,

$$
\begin{aligned}
\frac{d y}{d t} & =\frac{d T}{d t} \frac{d y}{d T}=\frac{1}{\alpha} \frac{d(u \alpha)}{d T}=v(T) \\
\frac{d^{2} y}{d t^{2}} & =\frac{1}{\alpha} \frac{d v}{d T}
\end{aligned}
$$

Plugging this into,

$$
\frac{d^{2} y}{d t^{2}}+\alpha\left(\frac{1}{3}\left(\frac{d y}{d t}\right)^{3}-\frac{d y}{d t}\right)+\omega_{0}^{2} y=0,
$$

we get,

$$
\frac{1}{\alpha^{2}} \frac{d v}{d T}+\left(\frac{1}{3} v^{2}-1\right) v+\omega_{0}^{2} u=0
$$

8. Show that for $\alpha \rightarrow \infty$, the system involves two time scales. Find a relation $u=f(v)$ for which the two time scales are comparable.

The ODEs for v and u are,

$$
\begin{aligned}
\frac{d v}{d T} & =-\alpha^{2}\left\{\left(\frac{1}{3} v^{2}-1\right) v+\omega_{0}^{2} u\right\} \\
\frac{d u}{d T} & =v
\end{aligned}
$$

So the time derivative of v is of order $v \alpha^{2}$, whereas the time derivative of u is only of order v, so v changes infinitely faster than u except if $\left(\frac{1}{3} v^{2}-1\right) v-\omega_{0}^{2} u=0$, which is the case when $\{\cdot\}=0$,

$$
u=\frac{1}{\omega_{0}^{2}}\left(v-\frac{1}{3} v^{3}\right) .
$$

Another way of deriving the same result is to note that there are two timescales, and write $u=u(\tau=$ $\left.T \alpha^{2}, T\right), v=v\left(\tau=T \alpha^{2}, T\right)$. The derivatives transform as,

$$
\frac{d}{d T}=\frac{\partial}{\partial T}+\alpha^{2} \frac{\partial}{\partial \tau},
$$

Substituting into the ODEs we find,

$$
\begin{aligned}
\frac{1}{\alpha^{2}} \partial_{T} v+\partial_{\tau} v+\left(\frac{1}{3} v^{2}-1\right) v+\omega_{0}^{2} u & =0 \\
\partial_{T} u+\alpha^{2} \partial_{\tau} u & =v
\end{aligned}
$$

The second equation gives, at leading order $\mathcal{O}\left(\alpha^{2}\right)$ that $\partial_{\tau} u=0$, hence u doesn't depend on the fast time scale τ.

Figure 1: Example trajectories of the van der Pol oscillator in the (u, v) plane. The cubic nullcline determines much of the dynamics: starting from any initial condition, the trajectory moves fast in the v direction towards the nullcline (let's say to point a), then it slowly moves along the nullcline before zapping back from b to c. This motion is repeated periodically resulting in limit cycle dynamics.
9. Plot the nullcline $u=f(v)$ in the phase plane (u, v) and draw some example trajectories.

See Fig. 1.
10. Compute the leading order approximation of the period of these relaxation oscillations in the limit $\alpha \rightarrow \infty$. In the limit $\alpha \rightarrow \infty$ the dominant contribution to the period is coming from the trajectories along the nullcline $u=u_{n c}=f(v)=\frac{1}{\omega_{0}^{2}}\left(v-v^{3} / 3\right)$.

$$
\begin{aligned}
T & =2 \int_{T(a)}^{T(b)} d T \\
& =2 \int_{-\frac{2}{3 \omega_{0}^{2}}}^{\frac{2}{3 \omega_{0}^{2}}} \frac{d T}{d u_{n c}} d u_{n c} \\
& =2 \int_{2}^{1} \frac{1}{v} \frac{d f}{d v} d v \\
T & =\frac{3-2 \log (2)}{\omega_{0}^{2}} .
\end{aligned}
$$

To determine the limits of the integrals we first identity the values of u corresponding to the extrema of $f(v)$ and then find the corresponding v values. Also, we us the fact that $\frac{d u}{d T}=v$ to rewrite $\frac{d T}{d u_{n c}} d u_{n c}=\frac{1}{v} \frac{d f}{d v} d v$. This result is consistent dimensionally since we made the change of variables $T=t / \alpha$, hence in terms in terms of dimensions $[T]=$ time 2 since $[\alpha]=$ time $^{-1}$.

[^0]: ${ }^{1}$ Aside on eliminating the resonant terms. The general solution to the resonantly forced oscillator $\ddot{x}+\omega_{0}^{2} x=f e^{i \omega t}+$ c.c, $f \in \mathbb{C}$ independent of t, is given by $x(t)=\left(C-\frac{i f t}{2 \omega}\right) e^{i \omega t}+$ c.c.. A term with a polynomial (here linear) growth with time is called secular. After a time $t=\mathcal{O}(1 / \epsilon)$, the expansion breaks down and our approximation ceases to be valid.

