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1 Weakly damped harmonic oscillator. We will start with an example that can be solved exactly
to build intuition about the method of multiple scales. Consider the weakly damped linear oscillator
(0 <  ≪ 1),

ẍ+ 2ẋ+ ω2
0x = 0, (1)

with initial conditions x(0) = 0 and ẋ(0) = 1. Consider ω2
0 = 1 without loss of generality.

1. Show that the exact solution to this problem is x(t, ) = (1− 2)−1/2e−t sin
√

1− 2t

. Identify the two

main time scales of the system.

We can rewrite Eq. 1 as a system of first order ODEs in the (x,ω = ẋ) phase space,


ẋ = ω

ω̇ = −x− 2ω,

which we can solve with the methods of TD1. Identifying A =


0 1
−1 −2


, we find that the eigenvalues

λ = − ± i
√
1− 2, from which we can already deduce that for 0 <  ≪ 1 the dynamics is a very slowly

decaying spiral. To write down a full solution we need also the eigenvectors, which we can obtain by


−λ 1
−1 −2− λ


vx
vω


= 0 ⇒ vω = λvx.

Recalling the results of TD1, we find,


x(t)
ω(t)


= c1e

λ1t v1 + c2e
λ2t v2

= c1e
(−+i

√
1−2)t


1

−+ i
√
1− 2


+ c2e

(−−i
√
1−2)t


1

−− i
√
1− 2


.

Plugging in the initial conditions x(0) = 0 and ω(0) = 1, we find,

0 = c1 + c2

1 = (−+ i


1− 2)c1 + (−− i


1− 2)c2

which yields

c2 = −c1

1 = c2 − i


1− 2c2 − c2 − i


1− 2c2 ⇒ c2 =
−1

2i
√
1− 2

.

Putting everything together we find,

x(t) = e−t 1

2i
√
1− 2


ei
√
1−2t − e−i

√
1−2t



x(t) = e−t

1− 2

−1/2
sin


1− 2t


,

using Euler’s formula. As expected, x(t) exhibits a fast oscillatory time scale t ∼ O(1) and a slower time
scale t ∼ 1/ over which the amplitude of the oscillations decay.

2. We will now introduce the method of multiple scales. Let us define a new slow timescale T1 = t, which
we will assume to be constant with regard to the fast time scale τ = t. In general, we can have N slow
time scales and rewrite x(t) as x(τ, T1, . . . , TN ). Show that up to O(2), we can rewrite Eq. 1 as,

∂2x

∂τ2
+ x = −2

dx

dτ
− 2

d2x

dτdT1
+O(2)
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The time derivatives can be expanded using the chain rule, yielding

ẋ =
∂x

∂τ
+ 

∂x

∂T1
+O(2),

and,

ẍ =
∂2x

∂τ2
+ 2

∂2x

∂τ∂T1
+O(2).

Plugging this into Eq. 1 we find,

∂2x

∂τ2
+ x = −2

∂2x

∂τ∂T1
− 2

∂x

∂τ
+O(2)

3. Expand the solution to Eq. 1 as a series to find,

∂2x0
∂τ2

+ 


∂2x1
∂τ2

+ 2
∂2x0
∂T1τ


+ 2

∂x0
∂τ

+ x0 + x1 +O(2) = 0

Writing x(t, ) = x0(t) + x1(t) + 2x2(t) + . . ., we get,

∂2x0
∂τ2

+ x0 + 
∂2x1
∂τ2

+ x1 = −2
∂2x0
∂τ∂T1

− 2
∂x0
∂τ

+O(2)

∂2x0
∂τ2

+ 


∂2x1
∂τ2

+ 2
∂2x0
∂τdT1


+ 2

∂x0
∂τ

+ x0 + x1 +O(2) = 0.

4. Use the solvability condition at O(1) to find that x0 = A sin τ +B cos τ . Note that the “constants” A and
B are actually functions of the slow time scale T1.

Collecting powers of  yields a pair of differential equations

O(1) :
∂2x0
∂τ2

+ x0 = 0

O() :
∂2x1
∂τ2

+ 2
∂2x0
∂τ∂T1

+ 2
∂x0
∂τ

+ x1 = 0,

From which we can see that at O() we have a simple harmonic oscillator equation with solution x0 =
A sin τ +B cos τ .

5. Determine A(T1) and B(T1) by going to next order in  and getting rid of resonant terms.

Replacing x0 into the O() equation we have the terms,

∂x0
∂τ

= A cos τ −B sin τ

∂2x0
∂T1∂τ

= ∂T1A cos τ − ∂T1B sin τ,

yielding,

∂2x1
∂τ2

+ 2 (∂T1A cos τ − ∂T1B sin τ) + 2 (A cos τ −B sin τ) + x1 = 0

∂2x1
∂τ2

+ x1 = −2(∂T1A+A) cos τ + 2(∂T1B +B) sin τ,

We get rid of resonant terms to avoid the blowing up of solutions 1. In order to do that, we need to set
∂T1A+A = 0 and ∂T1B +B = 0, yielding,

A(T1) = A(0)e−T1

A(T2) = A(0)e−T2 .

6. Use the initial conditions to find the approximation,

x = e−t sin t+O().

1Aside on eliminating the resonant terms. The general solution to the resonantly forced oscillator ẍ+ ω2
0x = feiωt + c.c, f ∈ C

independent of t, is given by x(t) =

C − ift

2ω


eiωt +c.c.. A term with a polynomial (here linear) growth with time is called secular.

After a time t = O(1/), the expansion breaks down and our approximation ceases to be valid.
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The initial condition for x yields x(0) = 0 = x0(0, 0) + x1(0, 0) +O(2), which requires x0(0, 0) = 0 and
x1(0, 0) = 0. Similarly, for ẋ we have,

ẋ(0) = 1 =
∂x0(0, 0)

∂τ
+ 


∂x0(0, 0)

∂T1
+

∂x1(0, 0)

∂τ


+O(2),

so

∂τx0(0, 0) = 1

and

∂T1x0(0, 0) + ∂τx1(0, 0) = 0.

Using the solution x0 = A sin τ+B cos τ , we find from x0(0, 0) = 0 that B(0) = 0 which implies B(T ) = 0,
and from ∂τx0(0, 0) = 1 that A(0) = 1 and so A(T1) = e−T1 which yields,

x0(τ, T1) = e−T1 sinT1,

and therefore,

x(t) = e−t sin t+O()

7. Compare this with the exact solution of 1.1). The damping term actually has two effects: it dampens the
oscillation amplitude, but also creates a shift in frequency. On what timescale do they occur?

Comparing the two solutions we see that the approximate solution fails to capture the (1 − 2)−1/2

correction and, more importantly, the manner in which the frequency of the oscillations is shifted slightly
from 1. The frequency of the oscillations is

√
1− 2 ≈ 1 − 2

2 , which means that after a very long time
t ∼ O(1/2) this frequency error will have a large cumulative effects. This is, in fact, a third super-slow
time scale, which we could obtain either through higher order corrections in , or by introducing a slower
time scale T2 = 2t to investigate the long-term phase shift caused by the O(2) error in frequency.

2 Nonlinear oscillations: the van der Pol oscillator Consider the van der Pol oscillator,

ẍ+ (x2 − α)ẋ+ ω2
0x = 0 (2)

1. Perform linear stability analysis in the vicinity of the stationary solutions and draw the phase space for
α > 0 and α < 0.

Rewriting Eq. 2 as a system of first order ODEs, we get,

ẋ = v

v̇ = −ω2
0x− (x2 − α)v

,

which admit a fixed point at the origin (x∗, v∗) = (0, 0). Linearizing about this fixed point we find the
jacobian matrix,

J =


0 1

−ω2
0 α,



with eigenvalues λ = α
2 ±


α2

4 − ω2
0. Thus, for

α4

4 > ω2
0 we have real eigenvalues and the fixed point is a

stable or unstable node depending on the sign of λ. For α4

4 < ω2
0 the origin is the focus of a spiral, which

is stable from α < 0 and unstable for α > 0 (Hopf bifurcation).

2. Find the evolution equation for the energy of the oscillator E = v2

2 +
ω2
0x

2

2 , where v = ẋ. Show that the
origin is globally stable for α < 0?

We can write Ė = v̇v + ω2
0xẋ = (α− x2)ẋ2. The origin is globally stable when α < 0 because Ė < 0: the

system dissipates energy over time and eventually decays towards the origin.

3. For α > 0 linear stability analysis predicts exponential growth of the oscillations, but this is eventually
stopped by the non-linear term (x2 − α). Consider that for small α > 0 (just after the bifurcation
point) there is a nonlinear limit cycle that is very close to a linear harmonic oscillator, such that we can
approximate x(t) as x(t) ∼ a sin(ωt+ φ). Considering the energy balance over one cycle, determine how
the amplitude of the oscillations a scales with α.

As time goes one, the energy is either growing or decaying depending on the sign of (α−x2). For x <
√
α,

the energy is positive and the oscillations grow, and when x >
√
α the energy is negative and the balance

between excitation for low x and dissipation for large x leads to a periodic solution. Nonetheless, the
energy balance over one cycle requires that over a period T

1

T

 T

0
Ėdt = 0

α〈ẋ2〉 − 〈x2ẋ2〉 = 0

αω2a2〈cos2(ωt+ φ)〉 − ω2a4〈sin2(ωt+ φ) cos2(ωt+ φ)〉 = 0,
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using the fact that averaged over one cycle 〈cos2(ωt + φ)〉 = 1/2 and 〈sin2(ωt + φ) cos2(ωt + φ)〉 = 1/8,
we find,

α
1

2
− a2

1

8
= 0

a = 2
√
α.

Another way to find the relationship between a and α is to plug in x(t) = a sin(ωt + φ) into Eq. 2. We
get ẋ = ωa cos(ωt + φ) and ẍ = −ω2a sin(ωt + φ). Using the trigonometric identities sin2(ωt + φ) =
1
2 [1− cos(2ωt+ 2φ)] and cos(2ωt+ 2φ) cos(ωt+ φ) = 1

2 [cos(3ωt+ 3φ) + cos(ωt+ φ)] we rewrite Eq. 2 as,

−ω2a sin(ωt+ φ) +

a2 sin2(ωt+ φ)− α


ωa cos(ωt+ φ) + ω2

0a sin(ωt+ φ) = 0

−ω2a sin(ωt+ φ) +
a3

2
ω cos(ωt+ φ)− a2

4
[cos(3ωt+ 3φ) + cos(ωt+ φ)]

−αωa cos(ωt+ φ) + ω2
0a sin(ωt+ φ) = 0

sin(ωt+ φ)(ω2
0 − ω2) + ω cos(ωt+ φ)


a2

4
− α


− ω2a2

4
cos(3ωt+ 3φ) = 0.

Truncating to eliminate the mode-three term we find ω ≈ ω0 and a ≈ 2
√
α. So the amplitude of the

oscillations scales as a ∼
√
α, which we couldn’t predict simply from linear stability analysis of the fixed

point which predicted only exponential divergence of trajectories.

4. Show that for a periodic solution of Eq. 2 one has


ẋ2


= ω2

0〈x2〉, (3)

where 〈·〉 stands for time averaging.

Multiplying Eq. 2 by x and taking the average over one period we find,

xẍ+ x3ẋ− αẋx+ ω2
0x

2 = 0

〈xẍ〉 = −ω2
0〈x2〉,

since the averages over one period of terms involving ẋ vanish. Integrating the l.h.s by parts we get,

x
1

T

 T

0
ẍdt− 1

T

 T

0


dx

dt

2

dt = −ω2
0〈x2〉

〈ẋ2〉 = ω2
0〈x2〉.

Notably, this result is formally identical to the virial theorem (avg. kinetic energy = avg. potential
energy) found for simple harmonic oscillations, but we have shown that it also applies to oscillations in
the presence of a velocity and amplitude-dependent force as described by the van der Pol oscillator.

5. A second role of the non-linearity is the production of higher harmonics and the deviation from the
fundamental frequency. To see that, consider now a more general periodic solution of the form,

x(t) =


n

an sin(nωt+ φn).

Give the expression of ω as a function of ω0 and the amplitudes an of the harmonics. In what parameter
range is the sinusoidal approximation used in question 2.3) valid?

We substitute the periodic ansatz x(t) =


n an sin(nωt+ φn) into the virial equation to find,



n,m

anamnωmω〈cos(nωt+ φn) cos(mωt+ φm)〉 = ω2
0



n,m

anam〈sin(nωt+ φn) sin(mωt+ φm)〉.

The averages of the trignometric functions are given by,

〈cos(nωt+ φn) cos(mωt+ φm)〉 = ω

2π

 2π/ω

0
cos(nωt+ φn) cos(mωt+ φm)dt

=
ω

2π

 2π/ω

0

1

2
(cos [(n+m)ωt+ φn + φm] + cos [(n−m)ωt+ φn − φm]) dt

=
1

2
δn,m,

and similarly,

〈sin(nωt+ φn) sin(mωt+ φm)〉 = ω

2π

 2π/ω

0
sin(nωt+ φn) sin(mωt+ φm)dt

=
ω

2π

 2π/ω

0

1

2
(− cos [(n+m)ωt+ φn + φm] + cos [(n−m)ωt+ φn − φm]) dt

=
1

2
δn,m.
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Thus we find,

ω = ω0

 
n a

2
n

n a
2
nn

2
.

Therefore, when there is only one mode we recover the solution of 2.3), but when higher harmonics are
excited we have ω < ω0. The approximation of 2.3) is thus valid whenever

∞
n=2 a

2
nn

2 ≪ a21, so when one
mode clearly dominates.

6. We now consider the van der Pol oscillator but in the limit of large α. Make the change of variables
x(t) =

√
αdy

dt in Eq. 2 and integrate the equation. Explain why the constant of integration can be taken
equal to 0.

Substituting x =
√
αẏ we obtain,

d

dt


d2y

dt2
+ α


1

3


dy

dt

3


− dy

dt
+ ω2

0y


= 0,

which integrates to,

d2y

dt2
+ α


1

3


dy

dt

3

− dy

dt


+ ω2

0y = C ∈ R.

As a second-order ODE, the original van der Pol equation needs to be supplemented with two initial

conditions for a unique solution, x(0) = dy
dt |t=0 = x0 and v(0) = d2y

dt2
|t=0 = v0. Since y can be shifted by

any constant without changing x for any x0 and v0 we may redefine y → y − 1
ω0


v0 + λ(x30/3− x0)


and

therefore ser C = 0 without loss of generality.

7. Defining T = t/α, u(T ) = y(t)/α, v = du
dT , write down the differential equations for u and v.

With a slow time scale T = t/α, u = y/α, and v(T ) = du
dT we get,

dy

dt
=
dT

dt

dy

dT
=

1

α

d(uα)

dT
= v(T )

d2y

dt2
=
1

α

dv

dT
,

Plugging this into,

d2y

dt2
+ α


1

3


dy

dt

3

− dy

dt


+ ω2

0y = 0,

we get,

1

α2

dv

dT
+


1

3
v2 − 1


v + ω2

0u = 0,

8. Show that for α → ∞, the system involves two time scales. Find a relation u = f(v) for which the two
time scales are comparable.

The ODEs for v and u are,

dv

dT
= −α2


1

3
v2 − 1


v + ω2

0u



du

dT
= v.

So the time derivative of v is of order vα2, whereas the time derivative of u is only of order v, so v changes
infinitely faster than u except if


1
3v

2 − 1

v − ω2

0u = 0, which is the case when {·} = 0,

u =
1

ω2
0


v − 1

3
v3

.

Another way of deriving the same result is to note that there are two timescales, and write u = u(τ =
Tα2, T ), v = v(τ = Tα2, T ). The derivatives transform as,

d

dT
=

∂

∂T
+ α2 ∂

∂τ
,

Substituting into the ODEs we find,

1

α2
∂T v + ∂τv +


1

3
v2 − 1


v + ω2

0u = 0

∂Tu+ α2∂τu = v.

The second equation gives, at leading order O(α2) that ∂τu = 0, hence u doesn’t depend on the fast time
scale τ .
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Figure 1: Example trajectories of the van der Pol oscillator in the (u, v) plane. The cubic nullcline determines
much of the dynamics: starting from any initial condition, the trajectory moves fast in the v direction towards
the nullcline (let’s say to point a), then it slowly moves along the nullcline before zapping back from b to c.
This motion is repeated periodically resulting in limit cycle dynamics.

9. Plot the nullcline u = f(v) in the phase plane (u, v) and draw some example trajectories.

See Fig. 1.

10. Compute the leading order approximation of the period of these relaxation oscillations in the limit α → ∞.
In the limit α → ∞ the dominant contribution to the period is coming from the trajectories along the
nullcline u = unc = f(v) = 1

ω2
0
(v − v3/3).

T = 2

 T (b)

T (a)
dT

= 2

 2

3ω2
0

− 2

3ω2
0

dT

dunc
dunc

= 2

 1

2

1

v

df

dv
dv

T =
3− 2 log(2)

ω2
0

.

To determine the limits of the integrals we first identity the values of u corresponding to the extrema of f(v)
and then find the corresponding v values. Also, we us the fact that du

dT = v to rewrite dT
dunc

dunc =
1
v
df
dvdv.

This result is consistent dimensionally since we made the change of variables T = t/α, hence in terms in
terms of dimensions [T ] = time2 since [α] = time−1.
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