ICFP M1 - Dynamical Systems and Chaos - TD nº4 - Exercises Nonlinear oscillators

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Instability of linearly coupled oscillators. Consider two linearly coupled oscillators, with

$$
\left\{\begin{array}{l}
\ddot{x}=-\omega_{1}^{2} x+a y \\
\ddot{y}=-\omega_{2}^{2} y+b x
\end{array}\right.
$$

with eigenfrequencies $\omega_{i},\left|\omega_{1}-\omega_{2}\right| \ll \omega_{1}, \omega_{2}$, and a and b are coupling constants.

1. Look for solutions of the form $x(t)=e^{\lambda t} \hat{x}, y(t)=e^{\lambda t} \hat{y}$ and find an expression for $\lambda_{i}^{2}(i=1,2)$
2. Consider $0<a b \ll 1$. Classify the behavior of the solutions and show that the difference between the two oscillation frequencies is increased by the strength of the coupling.
3. Consider now $a b<0$ and small. Show that the system is unstable for a critical value of $|a b|$ that depends on ω_{i}. What happens when $\omega_{1}=\omega_{2}$?
4. Take $\omega_{1}=\omega_{0}, \omega_{2}=\omega_{0}+\epsilon \delta, a=\epsilon \alpha, b=\epsilon \beta$ where $\epsilon \ll 1$ and $\omega_{0}, \delta, \alpha, \beta$ are of $\mathcal{O}(1)$. Define a slow time scale $T=\epsilon \tau$ (coming from ω_{2}), and rewrite x and y as $x(t)=u(t, T), y(t)=v(t, T)$. Expanding u and v to first order in ϵ, show that the solvability condition yields,

$$
\begin{equation*}
\partial_{T}^{2} A-i \delta \partial_{T} A+\frac{\alpha \beta}{4 \omega_{0}^{2}} A=0, \tag{1}
\end{equation*}
$$

for the amplitude of the u oscillations.
5. Give the conditions in δ, α, β and ω_{0} for instability. Compare with question 1.3).
6. We now consider the two coupled nonlinear oscillators,

$$
\left\{\begin{array}{l}
\ddot{x}=-\omega_{1}^{2} \sin x+a y \\
\ddot{y}=-\omega_{2}^{2} \sin y+b x
\end{array}\right.
$$

Close to the onset of instability, the trajectories slowly spiral out of the origin we can derive write,

$$
x(t)=u(t, T) \sim A(T) e^{i \omega_{0} t}+A^{*}(T) e^{-i \omega_{0} t}+\mathcal{O}(\epsilon)
$$

where $A(T)$ is the slowly varying amplitude of the oscillations. Assuming that $\partial_{T}^{2} A(T)$ can be written in terms of $A, \partial_{T} A$ and their complex conjugates, and using symmetry arguments, show that the amplitude equation is of the form,

$$
\begin{equation*}
\partial_{T}^{2} A=\mu A+i \nu \partial_{T} A+\gamma A^{2} A^{*} \tag{2}
\end{equation*}
$$

where μ, ν and γ are real constants.
7. Show that the second term in Eq. 2 can be removed with a simple change of variables.
8. Give the condition on γ for the existence of finite amplitude stationary solutions for $\mu>0$.

