ICFP M1 - DYNAMICAL SYSTEMS AND CHAOS - TD n°4 - Exercises Nonlinear oscillators

Baptiste Coquinot, Stephan Fauve baptiste.coquinot@ens.fr

2023-2024

1 Instability of linearly coupled oscillators. Consider two linearly coupled oscillators, with

$$\begin{cases} \ddot{x} = -\omega_1^2 x + ay \\ \ddot{y} = -\omega_2^2 y + bx, \end{cases}$$

with eigenfrequencies ω_i , $|\omega_1 - \omega_2| \ll \omega_1, \omega_2$, and a and b are coupling constants.

- 1. Look for solutions of the form $x(t) = e^{\lambda t} \hat{x}$, $y(t) = e^{\lambda t} \hat{y}$ and find an expression for λ_i^2 (i = 1, 2)
- 2. Consider $0 < ab \ll 1$. Classify the behavior of the solutions and show that the difference between the two oscillation frequencies is increased by the strength of the coupling.
- 3. Consider now ab < 0 and small. Show that the system is unstable for a critical value of |ab| that depends on ω_i . What happens when $\omega_1 = \omega_2$?
- 4. Take $\omega_1 = \omega_0$, $\omega_2 = \omega_0 + \epsilon \delta$, $a = \epsilon \alpha$, $b = \epsilon \beta$ where $\epsilon \ll 1$ and $\omega_0, \delta, \alpha, \beta$ are of $\mathcal{O}(1)$. Define a slow time scale $T = \epsilon \tau$ (coming from ω_2), and rewrite x and y as x(t) = u(t,T), y(t) = v(t,T). Expanding u and v to first order in ϵ , show that the solvability condition yields,

$$\partial_T^2 A - i\delta \partial_T A + \frac{\alpha\beta}{4\omega_0^2} A = 0, \tag{1}$$

for the amplitude of the u oscillations.

- 5. Give the conditions in δ , α , β and ω_0 for instability. Compare with question 1.3).
- 6. We now consider the two coupled nonlinear oscillators,

$$\begin{cases} \ddot{x} = -\omega_1^2 \sin x + ay \\ \ddot{y} = -\omega_2^2 \sin y + bx. \end{cases}$$

Close to the onset of instability, the trajectories slowly spiral out of the origin we can derive write,

$$x(t) = u(t,T) \sim A(T)e^{i\omega_0 t} + A^*(T)e^{-i\omega_0 t} + \mathcal{O}(\epsilon),$$

where A(T) is the slowly varying amplitude of the oscillations. Assuming that $\partial_T^2 A(T)$ can be written in terms of A, $\partial_T A$ and their complex conjugates, and using symmetry arguments, show that the amplitude equation is of the form,

$$\partial_T^2 A = \mu A + i\nu \partial_T A + \gamma A^2 A^*, \tag{2}$$

where μ , ν and γ are real constants.

- 7. Show that the second term in Eq.2 can be removed with a simple change of variables.
- 8. Give the condition on γ for the existence of finite amplitude stationary solutions for $\mu > 0$.