ICFP M1 - Dynamical Systems and Chaos - TD n ${ }^{\circ} 4$ - Solutions Nonlinear oscillators

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Instability of linearly coupled oscillators. Consider two linearly coupled oscillators, with

$$
\left\{\begin{array}{l}
\ddot{x}=-\omega_{1}^{2} x+a y \\
\ddot{y}=-\omega_{2}^{2} y+b x
\end{array}\right.
$$

with eigenfrequencies $\omega_{i},\left|\omega_{1}-\omega_{2}\right| \ll \omega_{1}, \omega_{2}$, and a and b are coupling constants.

1. Look for solutions of the form $x(t)=e^{\lambda t} \hat{x}, y(t)=e^{\lambda t} \hat{y}$ and find an expression for $\lambda_{i}^{2}(i=1,2)$

Plugging in the ansatz we get,

$$
\left\{\begin{array}{l}
\lambda^{2} \hat{x}=-\omega_{1}^{2} \hat{x}+a \hat{y} \\
\lambda^{2} \hat{y}=-\omega_{2}^{2} \hat{y}+b \hat{x}
\end{array}\right.
$$

with nontrivial solution $\lambda^{4}+\lambda^{2}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+\omega_{1}^{2} \omega_{2}^{2}-b a=0$,

$$
\lambda^{2}=-\frac{\omega_{1}^{2}+\omega_{2}^{2} \pm \sqrt{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+4 a b}}{2}
$$

2. Consider $0<a b \ll 1$. Classify the behavior of the solutions and show that the difference between the two oscillation frequencies is increased by the strength of the coupling.
For $0<a b \ll 1$ we find, $\lambda^{2} \sim-\frac{\omega_{1}^{2}+\omega_{2}^{2}}{2}$ since $\left|\omega_{1}-\omega_{2}\right| \ll \omega_{1}+\omega_{2}$. Therefore the eigenvalues are purely imaginary and we have a center. In addition, increasing the strength of the coupling $a b$, results in a larger $\left|\lambda_{1}-\lambda_{2}\right|$, so the oscillations frequencies are increased. (Note that actually the system can become unstable if we allow $\sqrt{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}+4 a b}>\left(\omega_{1}^{2}+\omega_{2}^{2}\right)$.)
3. Consider now $a b<0$ and small. Show that the system is unstable for a critical value of $|a b|$ that depends on ω_{i}. What happens when $\omega_{1}=\omega_{2}$?
For $a b<0$, there is a critical point when $a b=-\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2} / 4$, in which case we only have two degenerate eigenvalues: two pairs of oscillation frequencies coincide. For $|a b|>\frac{\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2}}{4}$ we get $\lambda^{2}=-\alpha^{2} \pm i \beta^{2}$ s.t. two of the four roots have positive real parts indicating instability. When $\omega_{1}=\omega_{2}$, then the system is unstable whenever $a b<0$.
4. Take $\omega_{1}=\omega_{0}, \omega_{2}=\omega_{0}+\epsilon \delta, a=\epsilon \alpha, b=\epsilon \beta$ where $\epsilon \ll 1$ and $\omega_{0}, \delta, \alpha, \beta$ are of $\mathcal{O}(1)$. Define a slow time scale $T=\epsilon \tau$ (coming from ω_{2}), and rewrite x and y as $x(t)=u(t, T), y(t)=v(t, T)$. Expanding u and v to first order in ϵ, show that the solvability condition yields,

$$
\begin{equation*}
\partial_{T}^{2} A-i \delta \partial_{T} A+\frac{\alpha \beta}{4 \omega_{0}^{2}} A=0, \tag{1}
\end{equation*}
$$

for the amplitude of the u oscillations.
Redefining the variables we get, and transforming the derivatives accordingly, $\frac{d}{d t}=\partial_{t}+\epsilon \partial T$, we find

$$
\left\{\begin{array}{l}
\partial_{t}^{2} x+2 \epsilon \partial_{t T} x=-\omega_{0}^{2} u+\epsilon \alpha y \\
\partial_{t}^{2} y+2 \epsilon \partial_{t T} y=-\omega_{0}^{2} y-2 \epsilon \delta \omega_{0} y+\epsilon \beta x .
\end{array}\right.
$$

Writing $x(t)=u(t, T) \sim u_{0}(t, T)+\epsilon u_{1}(t, T)$ and $y(t)=v(t, T) \sim v_{0}(t, T)+\epsilon v_{1}(t, T)$ we get,

$$
\left\{\begin{array}{l}
\partial_{t}^{2} u_{0}+\epsilon \partial_{t}^{2} u_{1}+2 \epsilon \partial_{t T} u_{0}=-\omega_{0}^{2} u_{0}-\epsilon \omega_{0}^{2} u_{1}+\epsilon \alpha v_{0}+\mathcal{O}\left(\epsilon^{2}\right) \\
\partial_{t}^{2} v_{0}+\epsilon \partial_{t}^{2} v_{1}+2 \epsilon \partial_{t T} v_{0}=-\omega_{0}^{2} v_{0}-\epsilon \omega_{0}^{2} v_{1}-2 \epsilon \delta \omega_{0} v_{0}+\epsilon \beta u_{0} .
\end{array}\right.
$$

Collecting terms at different orders of ϵ we find that,

$$
\begin{aligned}
& \mathcal{O}(1):\left\{\begin{array}{l}
\partial_{t}^{2} u_{0}+\omega_{0}^{2} u_{0}=0 \\
\partial_{t}^{2} v_{0}+\omega_{0}^{2} u_{0}=0
\end{array}\right. \\
& \mathcal{O}(\epsilon):\left\{\begin{array}{l}
\partial_{t}^{2} u_{1}+\omega_{0}^{2} u_{1}=\alpha v_{0}-2 \partial_{t T} u_{0} \\
\partial_{t}^{2} v_{1}+\omega_{0}^{2} v_{1}=-2 \partial_{t T} v_{0}-2 \delta v_{0} \omega_{0}+\beta u_{0}
\end{array}\right.
\end{aligned}
$$

At first order we have uncoupled harmonic oscillator with frequency ω_{0},

$$
\begin{aligned}
u_{0} & =A(T) e^{i \omega_{0} t}+\text { c.c. } \\
v_{0} & =B(T) e^{i \omega_{0} t}+\text { c.c.. }
\end{aligned}
$$

Substituting the $\mathcal{O}(1)$ solution into the $\mathcal{O}(\epsilon)$ equations and eliminating resonant terms we find

$$
\begin{aligned}
-2 i \omega_{0} \partial_{T} A+\alpha B & =0 \\
-2 \omega_{0} \delta B-2 i \omega_{0} \partial_{T} B+\beta A & =0,
\end{aligned}
$$

and thus

$$
\partial_{T}^{2} A-i \delta \partial_{T} A+\frac{\alpha \beta}{4 \omega_{0}^{2}} A=0 .
$$

5. Give the conditions in δ, α, β and ω_{0} for instability. Compare with question 1.3).

The exponential ansatz $A \sim e^{\lambda t}$ leads to,

$$
\begin{aligned}
\lambda^{2}-i \delta \lambda+\frac{\alpha \beta}{4 \omega_{0}^{2}}= & 0 \\
\lambda & =\frac{i \delta \pm \sqrt{-\delta^{2}-\alpha \beta / \omega_{0}^{2}}}{2} \\
& =\frac{i \delta}{2} \pm \frac{i}{2} \sqrt{\delta+\frac{\alpha \beta}{\omega_{0}^{2}}} .
\end{aligned}
$$

Thus, an instability occurs when $\alpha \beta<-\delta \omega_{0}^{2}$ so there is a critical point at $\alpha \beta=-\delta \omega_{0}^{2}$. This is in agreement with 1.3) since the critical point is at

$$
\begin{aligned}
a b & =-\frac{1}{4}\left(\omega_{1}^{2}-\omega_{2}^{2}\right)^{2} \\
& =-\frac{1}{4}\left(2 \epsilon \delta \omega+\mathcal{O}\left(\epsilon^{2}\right)\right)^{2} \\
& =-\epsilon^{2} \delta^{2} \omega_{0}^{2}+\text { h.o.t } \\
& =\epsilon^{2} \alpha \beta \\
& =a b
\end{aligned}
$$

6. We now consider the two coupled nonlinear oscillators,

$$
\left\{\begin{array}{l}
\ddot{x}=-\omega_{1}^{2} \sin x+a y \\
\ddot{y}=-\omega_{2}^{2} \sin y+b x
\end{array}\right.
$$

Close to the onset of instability, the trajectories slowly spiral out of the origin we can derive write,

$$
x(t)=u(t, T) \sim A(T) e^{i \omega_{0} t}+A^{*}(T) e^{-i \omega_{0} t}+\mathcal{O}(\epsilon)
$$

where $A(T)$ is the slowly varying amplitude of the oscillations. Assuming that $\partial_{T}^{2} A(T)$ can be written in terms of $A, \partial_{T} A$ and their complex conjugates, and using symmetry arguments, show that the amplitude equation is of the form,

$$
\begin{equation*}
\partial_{T}^{2} A=\mu A+i \nu \partial_{T} A+\gamma A^{2} A^{*} \tag{2}
\end{equation*}
$$

where μ, ν and γ are real constants.
The equations of x and y exhibit two symmetries: a) time-translation invariance $t \rightarrow t+\theta$ (it's an autonomous system) and b) time-reversal symmetry $t \rightarrow-t$ (time only enters through a second derivative). From a), we see that transforming $t \rightarrow t+\frac{\phi}{\omega_{0}}, T \rightarrow T$ (T is much slower), we get,

$$
u(t, T) \sim A(T) e^{i \omega_{0} t} e^{i \phi}+A^{*}(T) e^{-i \omega_{0} t} e^{-i \phi} .
$$

If the dynamics of u transformed is to be conserved, then the dynamics of A should be invariant under the transformation $A(T) \rightarrow A(T) e^{i \phi}$. This transformation selects the combinations of $A, A^{*}, \partial_{T} A, \partial_{T} A^{*}$ that can appears into $\partial_{T}^{2} A$: only those terms that transform with a factor of $e^{i \phi}$. Considering all the combinations up to third order,
$A \rightarrow A e^{i \phi} ; A^{*} \rightarrow A^{*} e^{-i \phi} ; \partial_{T} A \rightarrow \partial_{T} A e^{i \phi} ; \partial_{T} A^{*} \rightarrow \partial_{T} A^{*} e^{-i \phi} ; A^{2} \rightarrow A^{2} e^{2 i \phi} ; A A^{*} \rightarrow A A^{*} ; A^{* 2} \rightarrow A^{* 2} e^{-2 i \phi}$
$A \partial_{T} A \rightarrow A \partial_{T} A e^{2 i \phi} ; A \partial_{T} A^{*} \rightarrow A \partial_{T} A^{*} ; A^{*} \partial_{T} A^{*} \rightarrow A^{*} \partial_{T} A^{*} e^{-2 i \phi} ; A^{2} A^{*} \rightarrow A^{2} A^{*} e^{i \phi} ; A^{* 2} A \rightarrow A^{* 2} A e^{-i \phi} ; \ldots$
we see that only the terms marked in red can appear in $\partial_{T}^{2} A$, thus,

$$
\partial_{T}^{2} A=c_{1} A+c_{2} \partial_{T} A+c_{3} A^{2} A^{*}
$$

Time-reversal symmetry implies that $t \rightarrow-t, T \rightarrow-T, A \rightarrow A^{*}$, which means that c_{1} and c_{3} are real while c_{2} is imaginary. Letting $c_{1}=\mu, c_{2}=i \nu$ and $c_{3}=\gamma$ with $\mu, \nu, \gamma \in \mathbb{R}$ we find the final solution,

$$
\partial_{T}^{2} A=\mu A+i \nu \partial_{T} A+\gamma A^{2} A^{*},
$$

7. Show that the second term in Eq. 2 can be removed with a simple change of variables.

To get ride of the second term, we define $B=A e^{i c T}$, giving,

$$
\begin{aligned}
& \partial_{T} A=\partial_{T} B e^{i c T}+i c B e^{i c T} \\
& \partial_{T}^{2} A=\partial_{T}^{2} B e^{i c T}+2 i c \partial_{T} B e^{i c T}-c^{2} B e^{i c T},
\end{aligned}
$$

which implies,

$$
\partial_{T}^{2} B+2 i c \partial_{T} B-c^{2} B=\mu B+i \nu \partial_{T} B-c \nu B e^{i c T}+\gamma B^{2} B^{*},
$$

Writing $c=\nu / 2$ we cancel out the imaginary terms, giving,

$$
\partial_{T}^{2} B=\left(\mu-\frac{\nu^{2}}{4}\right) B+\gamma|B|^{2} B .
$$

8. Give the condition on γ for the existence of finite amplitude stationary solutions for $\mu>0$. For stationary solutions we need $\partial_{T}^{2} B=0$, so $\gamma|B|^{2}=-\left(\mu-\nu^{2} / 4\right)$
