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1 Instability of linearly coupled oscillators. Consider two linearly coupled oscillators, with

i=—wir+ay
i = —w3y + bx,
with eigenfrequencies wj, |w1 — we| < w1, w9, and a and b are coupling constants.

1. Look for solutions of the form x(t) = e*#, y(t) = ey and find an expression for A\? (i = 1,2)

Plugging in the ansatz we get,
NiE = —wit + af
N = —w3j + bi

with nontrivial solution A* + A?(w? + w3) + wiw? — ba = 0,

_w% + w2 £ /(w? — w3)2 + 4ab

A2 =
2

2. Consider 0 < ab < 1. Classify the behavior of the solutions and show that the difference between the two
oscillation frequencies is increased by the strength of the coupling.

For 0 < ab < 1 we find, A\? ~ —@ since |w; — wa| < w1 + we. Therefore the eigenvalues are purely
imaginary and we have a center. In addition, increasing the strength of the coupling ab, results in a larger
|A1 — A2, so the oscillations frequencies are increased. (Note that actually the system can become unstable
if we allow \/(w? — w3)2 + 4ab > (w? + w3).)

3. Consider now ab < 0 and small. Show that the system is unstable for a critical value of |ab| that depends
on w;. What happens when w; = wy?

For ab < 0, there is a critical point when ab = —(w? — w3)?/4, in which case we only have two degenerate
2 2\2
eigenvalues: two pairs of oscillation frequencies coincide. For |ab| > (wlTwQ) we get A2 = —a? £if? s.t.

two of the four roots have positive real parts indicating instability. When w; = ws, then the system is
unstable whenever ab < 0.

4. Take wy = wp, we = wo + €0, a = ea, b = € where ¢ < 1 and wy, d, a, § are of O(1). Define a slow time
scale T' = er (coming from wy), and rewrite x and y as z(t) = u(¢,T), y(t) = v(¢t,T). Expanding u and v
to first order in €, show that the solvability condition yields,

A —isorA+ 22 A=, (1)
dw;
for the amplitude of the u oscillations.

Redefining the variables we get, and transforming the derivatives accordingly, % = 0y + €dT, we find
O x + 2e0irr = —wiu + ey
Oy + 201y = —wiy — 2€dwoy + €S

Writing x(t) = w(t,T) ~ uo(t,T) + eui(t,T) and y(t) = v(t,T) ~ vo(t,T) + evi(t,T) we get,

O2ug + €0?uy + 2€0prug = —wiug — ewduy + eavg + O(€?)
0?vg + €0}vy + 2e0prvg = —w%vo — ew%vl — 2edwovg + €Bug.

Collecting terms at different orders of € we find that,

0() - DPug + wguo =0
| 0%vo + wiug = 0
o 8t2u1 + wgul = avg — 207U
€) :
8301 + wgvl = —20y7v9 — 20vgwo + Pug
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At first order we have uncoupled harmonic oscillator with frequency wy,

ug = A(T)e™°! +c.c.
vo = B(T)e™" 4 c.c..

Substituting the O(1) solution into the O(e€) equations and eliminating resonant terms we find

—2iwg0rA+aB =0
*2(0063 - inoaTB + ﬁA — O,

and thus
B

03A — i60r A+~ A = 0.
4w;

5. Give the conditions in d, «, 8 and wy for instability. Compare with question 1.3).
The exponential ansatz A ~ e* leads to,

B

A2 — s\
10N + 4“)8

=0
\— i6 £ /—6% — af/wi
B 2

0 af
=—=+ —/d+ —.
2 2 +w3

Thus, an instability occurs when af < —dw? so there is a critical point at a8 = —éw3. This is in
agreement with 1.3) since the critical point is at

ab=— (w% — w%)Q

S A

2
=1 (26w + 0(62))
= —?0%wi + hot
= caf

=ab

6. We now consider the two coupled nonlinear oscillators,

i = —wisinx + ay
i = —w3siny + ba.

Close to the onset of instability, the trajectories slowly spiral out of the origin we can derive write,
z(t) = u(t,T) ~ A(T)e™! + A*(T)e ™0 4 O(e),

where A(T) is the slowly varying amplitude of the oscillations. Assuming that 2 A(T) can be written in
terms of A, OrA and their complex conjugates, and using symmetry arguments, show that the amplitude
equation is of the form,

0FA = pA +ivOrA + yA? A, (2)

where pu, v and ~ are real constants.

The equations of x and y exhibit two symmetries: a) time-translation invariance ¢ — t + 6 (it’s an
autonomous system) and b) time-reversal symmetry ¢ — —t (time only enters through a second derivative).
From a), we see that transforming ¢t — ¢ + a%, T — T (T is much slower), we get,

U(t, T) ~ A(T)eiwot€i¢ 4 A* (T)e—iwote—w‘

If the dynamics of u transformed is to be conserved, then the dynamics of A should be invariant under
the transformation A(T) — A(T)e®. This transformation selects the combinations of A, A*, drA, OrA*
that can appears into O%A: only those terms that transform with a factor of e’®. Considering all the
combinations up to third order,

A — Ae'?: A — A%, 00 A — OpAe'?®; OpA* — OpAte™ P A2 5 A% AAT — AAY AY? 5 A*2e%0
ADpA — ADpAe®P; ADpA* — ADpA*; A*OpA* — A*OpA*e 29 A2A* — A2A*™; A2 A — A2 Ae™; ...
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we see that only the terms marked in red can appear in 9% A, thus,
8%/1 =c1A+ c0rA+ CgAQA*,

Time-reversal symmetry implies that ¢ - —t, T' — =T, A — A*, which means that ¢; and c3 are real
while ¢o is imaginary. Letting ¢y = p, co = iv and ¢3 = v with u, v,y € R we find the final solution,

0% A = pA + ivdp A+ yA%A*,

7. Show that the second term in Eq.2 can be removed with a simple change of variables.

To get ride of the second term, we define B = Ae'T’| giving,

OrA = 0pBe'T 4+ icBe'T
0% A = 03 Be'T + 2icOrBe'! — *Be' T,
which implies,
2B + 2icOrB — B = uB + ivdpB — cvBe'T + yB*B*,
Writing ¢ = /2 we cancel out the imaginary terms, giving,

1/2
0%B = <u ~ 4> B+ v|B|*B.

8. Give the condition on « for the existence of finite amplitude stationary solutions for p > 0.

For stationary solutions we need 93.B = 0, so |B|* = — (u — 1*/4).



