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1 Instability of linearly coupled oscillators. Consider two linearly coupled oscillators, with
󰀫
ẍ = −ω2

1x+ ay

ÿ = −ω2
2y + bx,

with eigenfrequencies ωi, |ω1 − ω2| ≪ ω1,ω2, and a and b are coupling constants.

1. Look for solutions of the form x(t) = eλtx̂, y(t) = eλtŷ and find an expression for λ2
i (i = 1, 2)

Plugging in the ansatz we get,
󰀫
λ2x̂ = −ω2

1x̂+ aŷ

λ2ŷ = −ω2
2 ŷ + bx̂

with nontrivial solution λ4 + λ2(ω2
1 + ω2

2) + ω2
1ω

2
2 − ba = 0,

λ2 = −ω2
1 + ω2

2 ±
󰁳

(ω2
1 − ω2

2)
2 + 4ab

2
.

2. Consider 0 < ab ≪ 1. Classify the behavior of the solutions and show that the difference between the two
oscillation frequencies is increased by the strength of the coupling.

For 0 < ab ≪ 1 we find, λ2 ∼ −ω2
1+ω2

2
2 since |ω1 − ω2| ≪ ω1 + ω2. Therefore the eigenvalues are purely

imaginary and we have a center. In addition, increasing the strength of the coupling ab, results in a larger
|λ1−λ2|, so the oscillations frequencies are increased. (Note that actually the system can become unstable
if we allow

󰁳
(ω2

1 − ω2
2)

2 + 4ab > (ω2
1 + ω2

2).)

3. Consider now ab < 0 and small. Show that the system is unstable for a critical value of |ab| that depends
on ωi. What happens when ω1 = ω2?

For ab < 0, there is a critical point when ab = −(ω2
1 − ω2

2)
2/4, in which case we only have two degenerate

eigenvalues: two pairs of oscillation frequencies coincide. For |ab| > (ω2
1−ω2

2)
2

4 we get λ2 = −α2 ± iβ2 s.t.
two of the four roots have positive real parts indicating instability. When ω1 = ω2, then the system is
unstable whenever ab < 0.

4. Take ω1 = ω0, ω2 = ω0 + 󰂃δ, a = 󰂃α, b = 󰂃β where 󰂃 ≪ 1 and ω0, δ,α,β are of O(1). Define a slow time
scale T = 󰂃τ (coming from ω2), and rewrite x and y as x(t) = u(t, T ), y(t) = v(t, T ). Expanding u and v
to first order in 󰂃, show that the solvability condition yields,

∂2
TA− iδ∂TA+

αβ

4ω2
0

A = 0, (1)

for the amplitude of the u oscillations.

Redefining the variables we get, and transforming the derivatives accordingly, d
dt = ∂t + 󰂃∂T , we find

󰀫
∂2
t x+ 2󰂃∂tTx = −ω2

0u+ 󰂃αy

∂2
t y + 2󰂃∂tT y = −ω2

0y − 2󰂃δω0y + 󰂃βx.

Writing x(t) = u(t, T ) ∼ u0(t, T ) + 󰂃u1(t, T ) and y(t) = v(t, T ) ∼ v0(t, T ) + 󰂃v1(t, T ) we get,
󰀫
∂2
t u0 + 󰂃∂2

t u1 + 2󰂃∂tTu0 = −ω2
0u0 − 󰂃ω2

0u1 + 󰂃αv0 +O(󰂃2)

∂2
t v0 + 󰂃∂2

t v1 + 2󰂃∂tT v0 = −ω2
0v0 − 󰂃ω2

0v1 − 2󰂃δω0v0 + 󰂃βu0.

Collecting terms at different orders of 󰂃 we find that,

O(1) :

󰀫
∂2
t u0 + ω2

0u0 = 0

∂2
t v0 + ω2

0u0 = 0

O(󰂃) :

󰀫
∂2
t u1 + ω2

0u1 = αv0 − 2∂tTu0

∂2
t v1 + ω2

0v1 = −2∂tT v0 − 2δv0ω0 + βu0
.
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At first order we have uncoupled harmonic oscillator with frequency ω0,

u0 = A(T )eiω0t + c.c.

v0 = B(T )eiω0t + c.c..

Substituting the O(1) solution into the O(󰂃) equations and eliminating resonant terms we find

−2iω0∂TA+ αB = 0

−2ω0δB − 2iω0∂TB + βA = 0,

and thus

∂2
TA− iδ∂TA+

αβ

4ω2
0

A = 0.

5. Give the conditions in δ, α, β and ω0 for instability. Compare with question 1.3).

The exponential ansatz A ∼ eλt leads to,

λ2 − iδλ+
αβ

4ω2
0

= 0

λ =
iδ ±

󰁳
−δ2 − αβ/ω2

0

2

=
iδ

2
± i

2

󰁶

δ +
αβ

ω2
0

.

Thus, an instability occurs when αβ < −δω2
0 so there is a critical point at αβ = −δω2

0. This is in
agreement with 1.3) since the critical point is at

ab = −1

4

󰀃
ω2
1 − ω2

2

󰀄2

= −1

4

󰀃
2󰂃δω +O(󰂃2)

󰀄2

= −󰂃2δ2ω2
0 + h.o.t

= 󰂃2αβ

= ab

6. We now consider the two coupled nonlinear oscillators,

󰀫
ẍ = −ω2

1 sinx+ ay

ÿ = −ω2
2 sin y + bx.

Close to the onset of instability, the trajectories slowly spiral out of the origin we can derive write,

x(t) = u(t, T ) ∼ A(T )eiω0t +A∗(T )e−iω0t +O(󰂃),

where A(T ) is the slowly varying amplitude of the oscillations. Assuming that ∂2
TA(T ) can be written in

terms of A, ∂TA and their complex conjugates, and using symmetry arguments, show that the amplitude
equation is of the form,

∂2
TA = µA+ iν∂TA+ γA2A∗, (2)

where µ, ν and γ are real constants.

The equations of x and y exhibit two symmetries: a) time-translation invariance t → t + θ (it’s an
autonomous system) and b) time-reversal symmetry t → −t (time only enters through a second derivative).
From a), we see that transforming t → t+ φ

ω0
, T → T (T is much slower), we get,

u(t, T ) ∼ A(T )eiω0teiφ +A∗(T )e−iω0te−iφ.

If the dynamics of u transformed is to be conserved, then the dynamics of A should be invariant under
the transformation A(T ) → A(T )eiφ. This transformation selects the combinations of A, A∗, ∂TA, ∂TA

∗

that can appears into ∂2
TA: only those terms that transform with a factor of eiφ. Considering all the

combinations up to third order,

A → Aeiφ;A∗ → A∗e−iφ; ∂TA → ∂TAe
iφ; ∂TA

∗ → ∂TA
∗e−iφ;A2 → A2e2iφ;AA∗ → AA∗;A∗2 → A∗2e−2iφ

A∂TA → A∂TAe
2iφ;A∂TA

∗ → A∂TA
∗;A∗∂TA

∗ → A∗∂TA
∗e−2iφ;A2A∗ → A2A∗eiφ;A∗2A → A∗2Ae−iφ; · · ·
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we see that only the terms marked in red can appear in ∂2
TA, thus,

∂2
TA = c1A+ c2∂TA+ c3A

2A∗,

Time-reversal symmetry implies that t → −t, T → −T , A → A∗, which means that c1 and c3 are real
while c2 is imaginary. Letting c1 = µ, c2 = iν and c3 = γ with µ, ν, γ ∈ R we find the final solution,

∂2
TA = µA+ iν∂TA+ γA2A∗,

7. Show that the second term in Eq. 2 can be removed with a simple change of variables.

To get ride of the second term, we define B = AeicT , giving,

∂TA = ∂TBeicT + icBeicT

∂2
TA = ∂2

TBeicT + 2ic∂TBeicT − c2BeicT ,

which implies,

∂2
TB + 2ic∂TB − c2B = µB + iν∂TB − cνBeicT + γB2B∗,

Writing c = ν/2 we cancel out the imaginary terms, giving,

∂2
TB =

󰀕
µ− ν2

4

󰀖
B + γ|B|2B.

8. Give the condition on γ for the existence of finite amplitude stationary solutions for µ > 0.

For stationary solutions we need ∂2
TB = 0, so γ|B|2 = −

󰀃
µ− ν2/4

󰀄
.
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