ICFP M1 - Dynamical Systems and Chaos - TD n ${ }^{\circ} 5$ - Exercises Parametric oscillators

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Inhibition of oscillations by an external forcing. Consider the van der Pol oscillator close to the instability boundary and with an added external forcing such that,

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x+\epsilon\left(x^{2}-\mu\right) \dot{x}=f \sin \Omega t \tag{1}
\end{equation*}
$$

where $\omega_{0}=\mathcal{O}(1), \mu=\mathcal{O}(1)$ and $0<\epsilon \ll 1$.

1. We first assume that $f=\mathcal{O}(1)$ and $\Omega \neq \omega_{0}$ and we look for an approximate solution of the form,

$$
x(t)=y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\cdots,
$$

with $T=\epsilon t$. Give the equation for y_{0} and show that the solution has two frequencies.
2. Give the governing equation for y_{1}. Using the solvability condition, find the governing equation for the amplitude of the oscillation at pulsation ω_{0}.
3. Plot the oscillation amplitude as a function of μ for different values of the forcing f and show that forcing inhibits the oscillation at frequency ω_{0}.
4. Let us now consider small amplitude forcing with $\Omega=\omega_{0}+\epsilon \sigma, f=\epsilon F$. Show that in this case, the amplitude of the oscillations behaves as

$$
\partial_{T} A=\frac{\mu}{2} A-\frac{A|A|^{2}}{2}-\frac{F e^{i \sigma T}}{4 \omega_{0}} .
$$

5. Writing the amplitude equation in the frame of reference of the external oscillator, discuss the emergent "resonant forcing" at leading order. In what conditions do we get a quasi-periodic regime?
6. Consider now a small but nearly resonant forcing of a modified van der Pol oscillator with an additional nonlinear term,

$$
\ddot{x}+\omega_{0}^{2} x-\epsilon x^{2}+\epsilon^{2}\left(x^{2}-\mu\right) \dot{x}=\epsilon f \sin \Omega t,
$$

where $\Omega=2 \omega_{0}+\epsilon^{2} \nu, \nu=\mathcal{O}(1)$. Defining a long time scale $T=\epsilon^{2} t$, give the governing equation for $y(t, T)=x(t)$ at $\mathcal{O}\left(\epsilon^{2}\right)$ as a function of Ω, ν, μ and f.
7. Expanding y as $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\epsilon^{2} y_{2}(t, T)+\cdots$, find $y_{0}(t, T)$ and $y_{1}(t, T)$.
8. Use the solvability condition at next order to find the governing equation for the complex amplitude of the oscillation at pulsation $\Omega / 2$. Interpret the result.

2 Parametric excitation The Mathieu equation describes the small amplitude oscillations of a pendulum whose length changes slightly in time with the same frequency as the natural oscillations ($k=\mathcal{O}(1)$),

$$
\begin{equation*}
\ddot{x}+\left(1+k \epsilon^{2}+\epsilon \cos t\right) x=0 . \tag{2}
\end{equation*}
$$

1. Introduce a slow time scale $T=\epsilon^{2} t$ and write down the governing equation for $y(t, T)=x$ in terms of
2. Expanding as $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\epsilon^{2} y_{2}(t, T)+\mathcal{O}\left(\epsilon^{3}\right)$, find an expression for $y_{0}(t, T)$
3. Give the solution y_{1} at order ϵ.
4. Use the solvability condition at next order to find the governing equation for the complex amplitude of the oscillation. Under which conditions do the oscillations grow?
