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1 Inhibition of oscillations by an external forcing. Consider the van der Pol oscillator close to the
instability boundary and with an added external forcing such that,

i+ wie + e(x? — p)i = fsin O, (1)
where wy = O(1), p=0O(1) and 0 < e < 1.
1. We first assume that f = O(1) and Q # wp and we look for an approximate solution of the form,
z(t) =yt T) =yot,T) + ey (t,T) + -,

with T" = et. Give the equation for yy and show that the solution has two frequencies.

The derivatives transform as,

d
E = 8,5 + GaT

d2

== 0% + 2e07 + O(€2),

and Eq. 1 transforms to,
Ofy + 2e0iry + wiy + €(y® — p)Oy = fsinQt + O(%).
Plugging in y(¢,T) = yo(¢t,T) + ey1(¢t,T) we find,
O7yo + wiyo + € [07y1 + 20iryo + wiyr + Oiyo(yg — 1)] = fsinQ,
which at O(1) gives,
O%yo + wiyo = fsin Q.

The homogeneous part of the solution yields yg = Ae™0! 4 c.c, and the inhomogeneous part should
behave as yj = AfsinQt + B f cos Qt. Plugging this ansatz into the previous equation we get B = 0 and
A =1/(w} - Q?), so the general solution is,

fsin Qt

9o(t) = (1) + yb(t) = At 4 Avemint 4 TP
0

Indeed, the solution has two distinct oscillation frequencies, wg and 2 coming from the homogeneous and
inhomogeneous terms respectively.

2. Give the governing equation for y;. Using the solvability condition, find the governing equation for the
amplitude of the oscillation at pulsation wy.

At O(e) we have,

OFy1 + wiyr = (1 — ¥5)Oyo — 2071y0.
Plugging the solution to yg and after some simplification steps we find that at pulsation wg we have
fQ

. 1
atZyl 4 wgyl — _giwot [z‘woA*AQ + iwp A (5 W — ,u) + inoﬁTA] + c.c. + non-resonant terms.
wg —

Getting rid of secular terms we find,

H f2 Lo
OorA=|=-——+~——— | A—-=|A]’A
ra= (4 «%—Q%J 34
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Figure 1: Oscillation amplitude as a function of . The forcing inhibits the frequency of oscillations.

3. Plot the oscillation amplitude as a function of u for different values of the forcing f and show that forcing
inhibits the oscillation at frequency wy.
The stationary solution drA = 0 reads,
f2
AP =p— —"—— .
Ay

So the forcing inhibits the oscillation amplitudes, Fig. 1.

4. Let us now consider small amplitude forcing with Q = wg + €0, f = €F. Show that in this case, the
amplitude of the oscillations behaves as

A‘A|2 FeiaT
2 4wy

%A:%A—

Writing £ = 97 + w?, in this case we get,
Ly + € [Eyl + 20iryo + 8tyo(y§ — u)] = eF'sin(wyt + €ot).
So in this case at O(1) we have

[,yo =0
Yo = Aeint _i_zefint

and the forcing appears at O(e),

iwwot ptoet _ —iwot ,—io€et

(& € (& (&

Ly + 207 Aiwoe™°t + c.c. + (ingewot + c.c.) (Aze%‘*’“t + c.c+ 2|A)? — p) =F 57
i

Collecting the terms in e*°! we find and noting that et = T,

L |A]2PA  Felol
A="A— - .
ord =3 2 4w

5. Writing the amplitude equation in the frame of reference of the external oscillator, discuss the emergent
“resonant forcing” at leading order. In what conditions do we get a quasi-periodic regime?

Placing the equation in the frame of reference of the external oscillator can be achieved by applying a
coordinate transformation A = Be'! which yields,
|B|’B F
2 4w

8TB = (,u - iO’)B

This transformation amounts to writing yo = B(T)e** + c.c. and thus we look at the amplitude equation
in the reference frame of the forcing oscillator. That’s the sense in which we get a resonant forcing, with
an amplitude that grows with the strength of the forcing. However, the fact that we are not forcing at
the resonant frequency (o # 0) results in a detuning that gives rise to a quasi-periodic regime.

6. Consider now a small but nearly resonant forcing of a modified van der Pol oscillator with an additional
nonlinear term,

i+ wir —ex® + (x? — p)i = ef sin O,
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where Q = 2w + €2v, v = O(1). Defining a long time scale T = ¢%t, give the governing equation for
y(t,T) = z(t) at O(e?) as a function of Q, v, u and f.

The derivatives transform as E = 0y + 20r and 4 S5 = 07 + 2€0yp. Rewriting wi = (2/2)? — Qe’v/2 we

find,
0? Q
Oty + 2620y + VA 621/734 — eyt + E(y? — p)oyy = ef sin(Qt).
7. Expanding y as y(t,T) = yo(t,T) + ey1 (t, T) + €2y2(t, T) + - - -, find yo(¢,T) and y; (¢, T).

With y(t,T) = yo(t, T) + ey1(t, T) + €*y2(t,T) we have y* = y2 + 2eyoy1 + cdots, giving
2

— Yo+

O2yo + €021 + €207 ys + 262 0ryo + |

B Qz N4y
€Ty1 + €2 Zyz —é 790 - €yo — 2¢° Yoy1 + € ( — )00 = €f sm(Qt)

Therefore, at O(1) we have
Lyg =0
yo(t,T) = A(T)ei%t +c.c.
Plugging this into the solution at O(e) we find,
2

[§) .
Oy + -y — (A% + e +2AP) = fsin().

Ly = A2 4 ce. + 2|AP + fsin(Qt).

The homogeneous part of the equation Ly; = 0 gives y{b — Beiat + c.c., whereas the inhomogeneous part
gives

: 4
inh 2 it 2 :
Yy = 302 (A + c.c — 6]A|* + fstt)

yielding,

. 4 .
y1(t,T) = Beist 4 ce. — 302 (AZeZQt +c.c — 6|A” + fsinQt)

8. Use the solvability condition at next order to find the governing equation for the complex amplitude of
the oscillation at pulsation €2/2. Interpret the result.

At O(e?) we have.

2

)
— 2 — —yo — 2yoy1 + (¥3 — 1)Ao = 0,

o? 20
LYo + 20¢Yo + 1 5

from which we need to collect the terms in e?2¢. From J¢ryo We get i%@TA. Then, from yo we get A(T),
from 1oy, we get,

it —i
i2t | g it 4 2 it | g2, —i 2 e —¢
(Ae 2+ Ae™'2 ) [ 302 (A +Ae —6|AI"+ f 57 >]

2zf
= 3z A A+ 34

Finally, from (y3 — p)0:yo we get,
(Azemt + Alemit + 2|A]2 - u) (nge 2t — zQZe’Qt>

Q
= AL APA —ip—A

i5 14 iny

Putting everything together we find,

VQ 20 | 9 22f , 9 Q-
. Q . zf iQ 40 2,
iQ0r A — EA(V +ip) — 302 A+ <7 - —3QZ> |Al“A=0

Q 4 4 1Y)
iQ0rA = EA(V +ip) + iy —A+ <_O _ l_> |AI2A

392 302 2
1 4 (1 A0
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2 Parametric excitation The Mathieu equation describes the small amplitude oscillations of a pendulum
whose length changes slightly in time with the same frequency as the natural oscillations (k = O(1)),

i 4 (1 + ke + ecost)z = 0. (2)

1. Introduce a slow time scale T' = €2t and write down the governing equation for y(t,T) = x

d2

The derivatives transform as % = 0y + €207 and = 0? + 2€20,r, thus giving,

02y 4+ (1 + ke + ecost)y + 26200y = 0

2. Expanding as y(t,T) = yo(t, T) + ey1(t, T) + e2ya(t, T) + O(e?), find an expression for yo(t,T) in terms of
trignometric functions.

At O(1) we have

87 yo + wiyo = 0
yo = Acost + Bsint.

3. Give the solution y; at order e.
At O(e) we have,

Oy + y1 + costyy = 0,

which solves to,

Ay | AT

y1 = C(T)cost+ D(T)sint — 5 6

0s 2t + sin 2t.

B(T)
6

4. Use the solvability condition at next order to find the governing equation for the complex amplitude of
the oscillation. Under which conditions do the oscillations grow?

At order €2 we have,

8t2y2 + yo + costyr + kyo + 20y7yo = 0.

Noting that cos2tcost = 3(cost + cos3t) and sin 2t cost = 3(sint + sin 3¢) we can collecting the terms in
cost and sint and use the solvability condition to find

B 1
A== —
or 2<k+12>

A 5

The solution to this pair of equations will thus grow or decay depending on the sign of (k — 1—52) (k - 1—12)
The oscillator is thus unstable (oscillations grow) when —1/12 < k < 5/12.



