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1 Inhibition of oscillations by an external forcing. Consider the van der Pol oscillator close to the
instability boundary and with an added external forcing such that,

ẍ+ ω2
0x+ (x2 − µ)ẋ = f sinΩt, (1)

where ω0 = O(1), µ = O(1) and 0 <  ≪ 1.

1. We first assume that f = O(1) and Ω ∕= ω0 and we look for an approximate solution of the form,

x(t) = y(t, T ) = y0(t, T ) + y1(t, T ) + · · · ,

with T = t. Give the equation for y0 and show that the solution has two frequencies.

The derivatives transform as,

d

dt
= ∂t + ∂T

d2

dt2
= ∂2

t + 2∂Tt +O(2),

and Eq. 1 transforms to,

∂2
t y + 2∂tT y + ω2

0y + (y2 − µ)∂ty = f sinΩt+O(2).

Plugging in y(t, T ) = y0(t, T ) + y1(t, T ) we find,

∂2
t y0 + ω2

0y0 + 

∂2
t y1 + 2∂tT y0 + ω2

0y1 + ∂ty0(y
2
0 − µ)


= f sinΩt,

which at O(1) gives,

∂2
t y0 + ω2

0y0 = f sinΩt.

The homogeneous part of the solution yields yh0 = Aeiω0t + c.c, and the inhomogeneous part should
behave as yi0 = Af sinΩt+Bf cosΩt. Plugging this ansatz into the previous equation we get B = 0 and
A = 1/(ω2

0 − Ω2), so the general solution is,

y0(t) = yh0 (t) + yi0(t) = Aeiω0t +A∗e−iω0t +
f sinΩt

ω2
0 − Ω2

.

Indeed, the solution has two distinct oscillation frequencies, ω0 and Ω coming from the homogeneous and
inhomogeneous terms respectively.

2. Give the governing equation for y1. Using the solvability condition, find the governing equation for the
amplitude of the oscillation at pulsation ω0.

At O() we have,

∂2
t y1 + ω2

0y1 = (µ− y20)∂ty0 − 2∂Tty0.

Plugging the solution to y0 and after some simplification steps we find that at pulsation ω0 we have

∂2
t y1 + ω2

0y1 = −eiω0t


iω0A

∗A2 + iω0A


1

2

f2

(ω2
0 − Ω2)2

− µ


+ 2iω0∂TA


+ c.c. + non-resonant terms.

Getting rid of secular terms we find,

∂TA =


µ

2
− f2

4(ω2
0 − Ω2)2


A− 1

2
|A|2A

1
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Figure 1: Oscillation amplitude as a function of µ. The forcing inhibits the frequency of oscillations.

3. Plot the oscillation amplitude as a function of µ for different values of the forcing f and show that forcing
inhibits the oscillation at frequency ω0.

The stationary solution ∂TA = 0 reads,

|A|2 = µ− f2

2(ω2
0 − Ω2

0)
2
.

So the forcing inhibits the oscillation amplitudes, Fig. 1.

4. Let us now consider small amplitude forcing with Ω = ω0 + σ, f = F . Show that in this case, the
amplitude of the oscillations behaves as

∂TA =
µ

2
A− A|A|2

2
− FeiσT

4ω0
.

Writing L = ∂2
t + ω2

0, in this case we get,

Ly0 + 

Ly1 + 2∂tT y0 + ∂ty0(y

2
0 − µ)


= F sin(ω0t+ σt).

So in this case at O(1) we have

Ly0 = 0

y0 = Aeiω0t +Ae−iω0t

and the forcing appears at O(),

Ly1 + 2∂TAiω0e
iω0t + c.c.+


iω0Ae

iω0t + c.c.
 

A2e2iω0t + c.c+ 2|A|2 − µ

= F

eiω0teiσt − e−iω0te−iσt

2i

Collecting the terms in eiω0t we find and noting that t = T ,

∂TA =
µ

2
A− |A|2A

2
− FeiσT

4ω0
.

5. Writing the amplitude equation in the frame of reference of the external oscillator, discuss the emergent
“resonant forcing” at leading order. In what conditions do we get a quasi-periodic regime?

Placing the equation in the frame of reference of the external oscillator can be achieved by applying a
coordinate transformation A = Beiσt which yields,

∂TB = (µ− iσ)B − |B|2B
2

− F

4ω0

This transformation amounts to writing y0 = B(T )eiΩt + c.c. and thus we look at the amplitude equation
in the reference frame of the forcing oscillator. That’s the sense in which we get a resonant forcing, with
an amplitude that grows with the strength of the forcing. However, the fact that we are not forcing at
the resonant frequency (σ ∕= 0) results in a detuning that gives rise to a quasi-periodic regime.

6. Consider now a small but nearly resonant forcing of a modified van der Pol oscillator with an additional
nonlinear term,

ẍ+ ω2
0x− x2 + 2(x2 − µ)ẋ = f sinΩt,

2
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where Ω = 2ω0 + 2ν, ν = O(1). Defining a long time scale T = 2t, give the governing equation for
y(t, T ) = x(t) at O(2) as a function of Ω, ν, µ and f .

The derivatives transform as d
dt = ∂t + 2∂T and d2

dt2
= ∂2

t + 22∂tT . Rewriting ω2
0 = (Ω/2)2 − Ω2ν/2 we

find,

∂2
t y + 22∂tT y +

Ω2

4
y − 2

νΩ

2
y − y2 + 2(y2 − µ)∂ty = f sin(Ωt).

7. Expanding y as y(t, T ) = y0(t, T ) + y1(t, T ) + 2y2(t, T ) + · · · , find y0(t, T ) and y1(t, T ).

With y(t, T ) = y0(t, T ) + y1(t, T ) + 2y2(t, T ) we have y2 = y20 + 2y0y1 + cdots, giving

∂2
t y0 + ∂2

t y1 + 2∂2
t y2 + 22∂tT y0 +

Ω2

4
y0+


Ω2

4
y1 + 2

Ω2

4
y2 − 2

νΩ

2
y0 − y20 − 22y0y1 + 2(y20 − µ)∂ty0 = f sin(Ωt).

Therefore, at O(1) we have

Ly0 = 0

y0(t, T ) = A(T )ei
Ω
2
t + c.c.

Plugging this into the solution at O() we find,

∂2
t y1 +

Ω2

4
y1 − (A2eiΩt + c.c.+ 2|A|2) = f sin(Ωt).

Ly1 = A2eiΩt + c.c.+ 2|A|2 + f sin(Ωt).

The homogeneous part of the equation Ly1 = 0 gives yh1 = Bei
Ω
2
t + c.c., whereas the inhomogeneous part

gives

yinh1 = − 4

3Ω2


A2eiΩt + c.c− 6|A|2 + f sinΩt



yielding,

y1(t, T ) = Bei
Ω
2
t + c.c.− 4

3Ω2


A2eiΩt + c.c− 6|A|2 + f sinΩt



8. Use the solvability condition at next order to find the governing equation for the complex amplitude of
the oscillation at pulsation Ω/2. Interpret the result.

At O(2) we have.

∂2
t y2 + 2∂tT y0 +

Ω2

4
y2 −

νΩ

2
y0 − 2y0y1 + (y20 − µ)∂ty0 = 0,

from which we need to collect the terms in ei
Ω
2
t. From ∂tT y0 we get iΩ2 ∂TA. Then, from y0 we get A(T ),

from y0y1 we get,


Aei

Ω
2
t +Ae−iΩ

2
t


− 4

3Ω2


A2eiΩt +A

2
e−iΩt − 6|A|2 + f

eiΩt − e−iΩt

2i



=
20

3Ω2
|A|2A+

2if

3Ω2
A.

Finally, from (y20 − µ)∂ty0 we get,


A2eiΩt +A

2
e−iΩt + 2|A|2 − µ


i
Ω

2
Aei

Ω
2
t − i

Ω

2
Ae−iΩ

2
t



= i
Ω

2
|A|2A− iµ

Ω

2
A

Putting everything together we find,

iΩ∂TA− νΩ

2
A− 2


20

3Ω2
|A|2A+

2if

3Ω2
A


+ iΩ|A|2A− iµ

Ω

2
A = 0

iΩ∂TA− Ω

2
A(ν + iµ)− 4if

3Ω2
A+


iΩ

2
− 40

3Ω2


|A|2A = 0

iΩ∂TA =
Ω

2
A(ν + iµ) +

4if

3Ω2
A+


40

3Ω2
− iΩ

2


|A|2A

∂TA =
1

2
A(µ− iν) +

4f

3Ω3
A−


1

2
− 40i

3Ω3


|A|2A

3
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2 Parametric excitation The Mathieu equation describes the small amplitude oscillations of a pendulum
whose length changes slightly in time with the same frequency as the natural oscillations (k = O(1)),

ẍ+ (1 + k2 +  cos t)x = 0. (2)

1. Introduce a slow time scale T = 2t and write down the governing equation for y(t, T ) = x

The derivatives transform as d
dt = ∂t + 2∂T and d2

dt2
= ∂2

t + 22∂tT , thus giving,

∂2
t y + (1 + k2 +  cos t)y + 22∂tT y = 0

2. Expanding as y(t, T ) = y0(t, T ) + y1(t, T ) + 2y2(t, T ) +O(3), find an expression for y0(t, T ) in terms of
trignometric functions.

At O(1) we have

∂2
t y0 + ω2

0y0 = 0

y0 = A cos t+B sin t.

3. Give the solution y1 at order .

At O() we have,

∂2
t y1 + y1 + cos ty0 = 0,

which solves to,

y1 = C(T ) cos t+D(T ) sin t− A(T )

2
+

A(T )

6
cos 2t+

B(T )

6
sin 2t.

4. Use the solvability condition at next order to find the governing equation for the complex amplitude of
the oscillation. Under which conditions do the oscillations grow?

At order 2 we have,

∂2
t y2 + y2 + cos ty1 + ky0 + 2∂tT y0 = 0.

Noting that cos 2t cos t = 1
2(cos t+ cos 3t) and sin 2t cos t = 1

2(sin t+ sin 3t) we can collecting the terms in
cos t and sin t and use the solvability condition to find

∂TA =
B

2


k +

1

12



∂TB =
A

2


k − 5

12


.

The solution to this pair of equations will thus grow or decay depending on the sign of

k − 5

12

 
k + 1

12


.

The oscillator is thus unstable (oscillations grow) when −1/12 < k < 5/12.
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