ICFP M1 - Dynamical Systems and Chaos - TD n ${ }^{\circ} 5$ - Solutions Parametric oscillators

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Inhibition of oscillations by an external forcing. Consider the van der Pol oscillator close to the instability boundary and with an added external forcing such that,

$$
\begin{equation*}
\ddot{x}+\omega_{0}^{2} x+\epsilon\left(x^{2}-\mu\right) \dot{x}=f \sin \Omega t \tag{1}
\end{equation*}
$$

where $\omega_{0}=\mathcal{O}(1), \mu=\mathcal{O}(1)$ and $0<\epsilon \ll 1$.

1. We first assume that $f=\mathcal{O}(1)$ and $\Omega \neq \omega_{0}$ and we look for an approximate solution of the form,

$$
x(t)=y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\cdots,
$$

with $T=\epsilon t$. Give the equation for y_{0} and show that the solution has two frequencies.
The derivatives transform as,

$$
\begin{aligned}
\frac{d}{d t} & =\partial_{t}+\epsilon \partial_{T} \\
\frac{d^{2}}{d t^{2}} & =\partial_{t}^{2}+2 \epsilon \partial_{T t}+\mathcal{O}\left(\epsilon^{2}\right)
\end{aligned}
$$

and Eq. 1 transforms to,

$$
\partial_{t}^{2} y+2 \epsilon \partial_{t T} y+\omega_{0}^{2} y+\epsilon\left(y^{2}-\mu\right) \partial_{t} y=f \sin \Omega t+\mathcal{O}\left(\epsilon^{2}\right) .
$$

Plugging in $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)$ we find,

$$
\partial_{t}^{2} y_{0}+\omega_{0}^{2} y_{0}+\epsilon\left[\partial_{t}^{2} y_{1}+2 \partial_{t T} y_{0}+\omega_{0}^{2} y_{1}+\partial_{t} y_{0}\left(y_{0}^{2}-\mu\right)\right]=f \sin \Omega t
$$

which at $\mathcal{O}(1)$ gives,

$$
\partial_{t}^{2} y_{0}+\omega_{0}^{2} y_{0}=f \sin \Omega t
$$

The homogeneous part of the solution yields $y_{0}^{h}=A e^{i \omega_{0} t}+c . c$, and the inhomogeneous part should behave as $y_{0}^{i}=A f \sin \Omega t+B f \cos \Omega t$. Plugging this ansatz into the previous equation we get $B=0$ and $A=1 /\left(\omega_{0}^{2}-\Omega^{2}\right)$, so the general solution is,

$$
y_{0}(t)=y_{0}^{h}(t)+y_{0}^{i}(t)=A e^{i \omega_{0} t}+A^{*} e^{-i \omega_{0} t}+\frac{f \sin \Omega t}{\omega_{0}^{2}-\Omega^{2}}
$$

Indeed, the solution has two distinct oscillation frequencies, ω_{0} and Ω coming from the homogeneous and inhomogeneous terms respectively.
2. Give the governing equation for y_{1}. Using the solvability condition, find the governing equation for the amplitude of the oscillation at pulsation ω_{0}.
At $O(\epsilon)$ we have,

$$
\partial_{t}^{2} y_{1}+\omega_{0}^{2} y_{1}=\left(\mu-y_{0}^{2}\right) \partial_{t} y_{0}-2 \partial_{T t} y_{0} .
$$

Plugging the solution to y_{0} and after some simplification steps we find that at pulsation ω_{0} we have

$$
\partial_{t}^{2} y_{1}+\omega_{0}^{2} y_{1}=-e^{i \omega_{0} t}\left[i \omega_{0} A^{*} A^{2}+i \omega_{0} A\left(\frac{1}{2} \frac{f^{2}}{\left(\omega_{0}^{2}-\Omega^{2}\right)^{2}}-\mu\right)+2 i \omega_{0} \partial_{T} A\right]+\text { c.c. }+ \text { non-resonant terms. }
$$

Getting rid of secular terms we find,

$$
\partial_{T} A=\left(\frac{\mu}{2}-\frac{f^{2}}{4\left(\omega_{0}^{2}-\Omega^{2}\right)^{2}}\right) A-\frac{1}{2}|A|^{2} A
$$

Figure 1: Oscillation amplitude as a function of μ. The forcing inhibits the frequency of oscillations.
3. Plot the oscillation amplitude as a function of μ for different values of the forcing f and show that forcing inhibits the oscillation at frequency ω_{0}.
The stationary solution $\partial_{T} A=0$ reads,

$$
|A|^{2}=\mu-\frac{f^{2}}{2\left(\omega_{0}^{2}-\Omega_{0}^{2}\right)^{2}} .
$$

So the forcing inhibits the oscillation amplitudes, Fig. 1.
4. Let us now consider small amplitude forcing with $\Omega=\omega_{0}+\epsilon \sigma, f=\epsilon F$. Show that in this case, the amplitude of the oscillations behaves as

$$
\partial_{T} A=\frac{\mu}{2} A-\frac{A|A|^{2}}{2}-\frac{F e^{i \sigma T}}{4 \omega_{0}} .
$$

Writing $\mathcal{L}=\partial_{t}^{2}+\omega_{0}^{2}$, in this case we get,

$$
\mathcal{L} y_{0}+\epsilon\left[\mathcal{L} y_{1}+2 \partial_{t T} y_{0}+\partial_{t} y_{0}\left(y_{0}^{2}-\mu\right)\right]=\epsilon F \sin \left(\omega_{0} t+\epsilon \sigma t\right) .
$$

So in this case at $\mathcal{O}(1)$ we have

$$
\begin{aligned}
\mathcal{L} y_{0} & =0 \\
y_{0} & =A e^{i \omega_{0} t}+\bar{A} e^{-i \omega_{0} t}
\end{aligned}
$$

and the forcing appears at $\mathcal{O}(\epsilon)$,

$$
\mathcal{L} y_{1}+2 \partial_{T} A i \omega_{0} e^{i \omega_{0} t}+c . c .+\left(i \omega_{0} A e^{i \omega_{0} t}+c . c .\right)\left(A^{2} e^{2 i \omega_{0} t}+c . c+2|A|^{2}-\mu\right)=F \frac{e^{i \omega_{0} t} e^{i \sigma \epsilon t}-e^{-i \omega_{0} t} e^{-i \sigma \epsilon t}}{2 i}
$$

Collecting the terms in $e^{i \omega_{0} t}$ we find and noting that $\epsilon t=T$,

$$
\partial_{T} A=\frac{\mu}{2} A-\frac{|A|^{2} A}{2}-\frac{F e^{i \sigma T}}{4 \omega_{0}} .
$$

5. Writing the amplitude equation in the frame of reference of the external oscillator, discuss the emergent "resonant forcing" at leading order. In what conditions do we get a quasi-periodic regime?
Placing the equation in the frame of reference of the external oscillator can be achieved by applying a coordinate transformation $A=B e^{i \sigma t}$ which yields,

$$
\partial_{T} B=(\mu-i \sigma) B-\frac{|B|^{2} B}{2}-\frac{F}{4 \omega_{0}}
$$

This transformation amounts to writing $y_{0}=B(T) e^{i \Omega t}+$ c.c. and thus we look at the amplitude equation in the reference frame of the forcing oscillator. That's the sense in which we get a resonant forcing, with an amplitude that grows with the strength of the forcing. However, the fact that we are not forcing at the resonant frequency $(\sigma \neq 0)$ results in a detuning that gives rise to a quasi-periodic regime.
6. Consider now a small but nearly resonant forcing of a modified van der Pol oscillator with an additional nonlinear term,

$$
\ddot{x}+\omega_{0}^{2} x-\epsilon x^{2}+\epsilon^{2}\left(x^{2}-\mu\right) \dot{x}=\epsilon f \sin \Omega t,
$$

where $\Omega=2 \omega_{0}+\epsilon^{2} \nu, \nu=\mathcal{O}(1)$. Defining a long time scale $T=\epsilon^{2} t$, give the governing equation for $y(t, T)=x(t)$ at $\mathcal{O}\left(\epsilon^{2}\right)$ as a function of Ω, ν, μ and f.
The derivatives transform as $\frac{d}{d t}=\partial_{t}+\epsilon^{2} \partial_{T}$ and $\frac{d^{2}}{d t^{2}}=\partial_{t}^{2}+2 \epsilon^{2} \partial_{t T}$. Rewriting $\omega_{0}^{2}=(\Omega / 2)^{2}-\Omega \epsilon^{2} \nu / 2$ we find,

$$
\partial_{t}^{2} y+2 \epsilon^{2} \partial_{t T} y+\frac{\Omega^{2}}{4} y-\epsilon^{2} \frac{\nu \Omega}{2} y-\epsilon y^{2}+\epsilon^{2}\left(y^{2}-\mu\right) \partial_{t} y=\epsilon f \sin (\Omega t)
$$

7. Expanding y as $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\epsilon^{2} y_{2}(t, T)+\cdots$, find $y_{0}(t, T)$ and $y_{1}(t, T)$.

With $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\epsilon^{2} y_{2}(t, T)$ we have $y^{2}=y_{0}^{2}+2 \epsilon y_{0} y_{1}+c d o t s$, giving

$$
\begin{array}{r}
\partial_{t}^{2} y_{0}+\epsilon \partial_{t}^{2} y_{1}+\epsilon^{2} \partial_{t}^{2} y_{2}+2 \epsilon^{2} \partial_{t T} y_{0}+\frac{\Omega^{2}}{4} y_{0}+ \\
\epsilon \frac{\Omega^{2}}{4} y_{1}+\epsilon^{2} \frac{\Omega^{2}}{4} y_{2}-\epsilon^{2} \frac{\nu \Omega}{2} y_{0}-\epsilon y_{0}^{2}-2 \epsilon^{2} y_{0} y_{1}+\epsilon^{2}\left(y_{0}^{2}-\mu\right) \partial_{t} y_{0}=\epsilon f \sin (\Omega t) .
\end{array}
$$

Therefore, at $\mathcal{O}(1)$ we have

$$
\begin{aligned}
\mathcal{L} y_{0} & =0 \\
y_{0}(t, T) & =A(T) e^{i \frac{\Omega}{2} t}+c . c .
\end{aligned}
$$

Plugging this into the solution at $\mathcal{O}(\epsilon)$ we find,

$$
\begin{aligned}
& \partial_{t}^{2} y_{1}+\frac{\Omega^{2}}{4} y_{1}-\left(A^{2} e^{i \Omega t}+\text { c.c. }+2|A|^{2}\right)=f \sin (\Omega t) . \\
& \mathcal{L} y_{1}=A^{2} e^{i \Omega t}+\text { c.c. }+2|A|^{2}+f \sin (\Omega t)
\end{aligned}
$$

The homogeneous part of the equation $\mathcal{L} y_{1}=0$ gives $y_{1}^{h}=B e^{i \frac{\Omega}{2} t}+$ c.c., whereas the inhomogeneous part gives

$$
y_{1}^{i n h}=-\frac{4}{3 \Omega^{2}}\left(A^{2} e^{i \Omega t}+c . c-6|A|^{2}+f \sin \Omega t\right)
$$

yielding,

$$
y_{1}(t, T)=B e^{i \frac{\Omega}{2} t}+c . c .-\frac{4}{3 \Omega^{2}}\left(A^{2} e^{i \Omega t}+c . c-6|A|^{2}+f \sin \Omega t\right)
$$

8. Use the solvability condition at next order to find the governing equation for the complex amplitude of the oscillation at pulsation $\Omega / 2$. Interpret the result.
At $\mathcal{O}\left(\epsilon^{2}\right)$ we have.

$$
\partial_{t}^{2} y_{2}+2 \partial_{t T} y_{0}+\frac{\Omega^{2}}{4} y_{2}-\frac{\nu \Omega}{2} y_{0}-2 y_{0} y_{1}+\left(y_{0}^{2}-\mu\right) \partial_{t} y_{0}=0,
$$

from which we need to collect the terms in $e^{i \frac{\Omega}{2} t}$. From $\partial_{t T} y_{0}$ we get $i \frac{\Omega}{2} \partial_{T} A$. Then, from y_{0} we get $A(T)$, from $y_{0} y_{1}$ we get,

$$
\begin{array}{r}
\left(A e^{i \frac{\Omega}{2} t}+\bar{A} e^{-i \frac{\Omega}{2} t}\right)\left[-\frac{4}{3 \Omega^{2}}\left(A^{2} e^{i \Omega t}+\bar{A}^{2} e^{-i \Omega t}-6|A|^{2}+f \frac{e^{i \Omega t}-e^{-i \Omega t}}{2 i}\right)\right] \\
=\frac{20}{3 \Omega^{2}}|A|^{2} A+\frac{2 i f}{3 \Omega^{2}} \bar{A} .
\end{array}
$$

Finally, from $\left(y_{0}^{2}-\mu\right) \partial_{t} y_{0}$ we get,

$$
\begin{array}{r}
\left(A^{2} e^{i \Omega t}+\bar{A}^{2} e^{-i \Omega t}+2|A|^{2}-\mu\right)\left(i \frac{\Omega}{2} A e^{i \frac{\Omega}{2} t}-i \frac{\Omega}{2} \bar{A} e^{-i \frac{\Omega}{2} t}\right) \\
=i \frac{\Omega}{2}|A|^{2} A-i \mu \frac{\Omega}{2} A
\end{array}
$$

Putting everything together we find,

$$
\begin{array}{r}
i \Omega \partial_{T} A-\frac{\nu \Omega}{2} A-2\left(\frac{20}{3 \Omega^{2}}|A|^{2} A+\frac{2 i f}{3 \Omega^{2}} \bar{A}\right)+i \Omega|A|^{2} A-i \mu \frac{\Omega}{2} A=0 \\
i \Omega \partial_{T} A-\frac{\Omega}{2} A(\nu+i \mu)-\frac{4 i f}{3 \Omega^{2}} \bar{A}+\left(\frac{i \Omega}{2}-\frac{40}{3 \Omega^{2}}\right)|A|^{2} A=0 \\
i \Omega \partial_{T} A=\frac{\Omega}{2} A(\nu+i \mu)+\frac{4 i f}{3 \Omega^{2}} \bar{A}+\left(\frac{40}{3 \Omega^{2}}-\frac{i \Omega}{2}\right)|A|^{2} A \\
\partial_{T} A=\frac{1}{2} A(\mu-i \nu)+\frac{4 f}{3 \Omega^{3}} \bar{A}-\left(\frac{1}{2}-\frac{40 i}{3 \Omega^{3}}\right)|A|^{2} A
\end{array}
$$

2 Parametric excitation The Mathieu equation describes the small amplitude oscillations of a pendulum whose length changes slightly in time with the same frequency as the natural oscillations ($k=\mathcal{O}(1)$),

$$
\begin{equation*}
\ddot{x}+\left(1+k \epsilon^{2}+\epsilon \cos t\right) x=0 . \tag{2}
\end{equation*}
$$

1. Introduce a slow time scale $T=\epsilon^{2} t$ and write down the governing equation for $y(t, T)=x$

The derivatives transform as $\frac{d}{d t}=\partial_{t}+\epsilon^{2} \partial_{T}$ and $\frac{d^{2}}{d t^{2}}=\partial_{t}^{2}+2 \epsilon^{2} \partial_{t T}$, thus giving,

$$
\partial_{t}^{2} y+\left(1+k \epsilon^{2}+\epsilon \cos t\right) y+2 \epsilon^{2} \partial_{t T} y=0
$$

2. Expanding as $y(t, T)=y_{0}(t, T)+\epsilon y_{1}(t, T)+\epsilon^{2} y_{2}(t, T)+\mathcal{O}\left(\epsilon^{3}\right)$, find an expression for $y_{0}(t, T)$ in terms of trignometric functions.
At $\mathcal{O}(1)$ we have

$$
\begin{array}{r}
\partial_{t}^{2} y_{0}+\omega_{0}^{2} y_{0}=0 \\
y_{0}=A \cos t+B \sin t .
\end{array}
$$

3. Give the solution y_{1} at order ϵ.

At $\mathcal{O}(\epsilon)$ we have,

$$
\partial_{t}^{2} y_{1}+y_{1}+\cos t y_{0}=0
$$

which solves to,

$$
y_{1}=C(T) \cos t+D(T) \sin t-\frac{A(T)}{2}+\frac{A(T)}{6} \cos 2 t+\frac{B(T)}{6} \sin 2 t .
$$

4. Use the solvability condition at next order to find the governing equation for the complex amplitude of the oscillation. Under which conditions do the oscillations grow?
At order ϵ^{2} we have,

$$
\partial_{t}^{2} y_{2}+y_{2}+\cos t y_{1}+k y_{0}+2 \partial_{t T} y_{0}=0 .
$$

Noting that $\cos 2 t \cos t=\frac{1}{2}(\cos t+\cos 3 t)$ and $\sin 2 t \cos t=\frac{1}{2}(\sin t+\sin 3 t)$ we can collecting the terms in $\cos t$ and $\sin t$ and use the solvability condition to find

$$
\begin{aligned}
& \partial_{T} A=\frac{B}{2}\left(k+\frac{1}{12}\right) \\
& \partial_{T} B=\frac{A}{2}\left(k-\frac{5}{12}\right) .
\end{aligned}
$$

The solution to this pair of equations will thus grow or decay depending on the sign of $\left(k-\frac{5}{12}\right)\left(k+\frac{1}{12}\right)$. The oscillator is thus unstable (oscillations grow) when $-1 / 12<k<5 / 12$.

