ICFP M1 - DYNAMICAL SYSTEMS AND CHAOS - TD n°6 - Exercises Chaos: theoretical analysis

Baptiste Coquinot, Stephan Fauve baptiste.coquinot@ens.fr

2023-2024

Figure 1: Simulation of the Lorenz sysem with $\sigma = 10$, $\beta = 8/3$ and $\rho = 28$.

1 Lorenz system Consider the Lorenz equations, a simplified model of convection rolls in the atmosphere,

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(\rho - z) - y \\ \dot{z} = xy - \beta z \end{cases}$$
(1)

- 1. Find its fixed points.
- 2. Find the governing equation for the phase space volume. Under what conditions is the system dissipative?
- 3. Assuming $\rho, \beta, \sigma > 0$ study the linear stability of the origin with ρ .
- 4. Find the characteristic equation for the eigenvalues of the Jacobian matrix at the other two fixed points.
- 5. Seeking solutions of the form $\lambda = i\omega$, where $\omega \in \mathbb{R}$ show that there is a pair of pure imaginary eigenvalues when $\rho = \sigma \left(\frac{\sigma + \beta + 3}{\sigma \beta 1}\right)$.
- 6. Assume now that the roots of the characteristic equation at C^{\pm} for $\rho > 1$ yield two complex conjugate eigenvalues and a real eigenvalue: $\lambda_{1,2} = a \pm ib$, $\lambda_3 = c$, with $a, b, c \in \mathbb{R}$. Keeping σ and β constant, vary ρ to find that that at ρ_H a pair of complex conjugate eigenvalues crosses the imaginary axis. Find a relationship between σ and β such that the crossing occurs from stable to unstable linear dynamics.
- 7. Optional: Defining $\epsilon = \rho^{-1/2}$, show that for $\rho \ll 1$ we can rewrite Eq.1 as,

$$\begin{cases} \dot{u} = v - \sigma \epsilon u \\ \dot{v} = -uw - \epsilon v \\ \dot{w} = uv - \epsilon \beta (w + \sigma) \end{cases}$$

Find two conserved quantities in the limit $\rho \to \infty$. Is the new system volume preserving for $\rho \to \infty$? Discuss.

2 One-dimensional maps

- 1. Consider the logistic map $x_{n+1} = \mu x_n(1 x_n)$ for $0 \le x_n \le 1$ and $0 \le \mu \le 4$. Find all the fixed points and characterize their stability.
- 2. Show that for $\mu > 3$ the logistic map has a 2-cycle. (Hint: look for a fixed point of the second-iterate map f(f(x)) = x).
- 3. Show that the 2-cycle is stable for $3 < \mu < 1 + \sqrt{6}$. (Hint: reduce the problem to a question about the stability of a fixed point).
- 4. When $\mu = 4$ show that $x_n = \sin^2(2^n \theta \pi)$ solves the logistic equation. Find θ in terms of the initial condition. Discuss how this solution highlights two key features of chaos: stretching and folding.