
ICFP M1 - Dynamical Systems and Chaos - TD no6 - Solutions

Chaos: theoretical analysis

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

1 Lorenz system Consider the Lorenz equations, a simplified model of convection rolls in the atmosphere,






ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

. (1)

1. Find its fixed points.

The fixed points can be found by taking (ẋ, ẏ, ż) = (0, 0, 0), yielding (x∗, y∗, z∗) = (0, 0, 0) and (x∗, y∗, z∗) =
(±


β(ρ− 1),±


β(ρ− 1), ρ− 1) (the latter were named C+ and C− by Lorenz1).

2. Find the governing equation for the phase space volume. Under what conditions is the system dissipative?

Consider an arbitrary close surface S(t) of volume V (t). In a time dt a patch of area dA sweeps out a
volume f · n̂dA, where n̂ is the unit vector normal to S and f is the instantaneous veclocity of the points
on the surface S. Therefore change in volume is given by V̇ =


s
f · n̂dA, which is equal to V̇ =


V ∇fdV .

For the Lorenz system we thus find,

V̇ = (−σ − 1− β)V ⇒ V (t) = e−(σ+1+β)tV (0).

This means that the system is dissipative (volumes shrink) whenever σ + 1 + β > 0.

3. Assuming ρ,β,σ > 0 study the linear stability of the origin with ρ.

To study the linear stability of the origin, we evaluate the Jacobian matrix at (ẋ, ẏ, ż) = (0, 0, 0), yielding,

J =




−σ σ 0
ρ −1 0
0 0 −β





The dynamics of z is decoupled from the rest and has eigenvalue −β: z(t) → 0 exponentially fast. The
remaining eigenvalues can be obtained by solving the reduced problem


ẋ
ẏ


=


−σ σ
ρ −1



which has the following eigenvalues

(σ + λ)(1 + λ)− σρ = 0

λ2 + (σ + 1)λ+ σ(1− ρ) = 0

λ = −σ + 1

2
±


(σ + 1)2 − 4σ(1− ρ)

2

Thus, with 0 < ρ < 1 all the eigenvalues are negative, and the origin is a stable fixed point. For ρ > 1 the
origin becomes a saddle, with one positive and one negative exponent. In fact, since (σ+1)2−4σ(1−ρ) =
σ2 − 2σ + 1+ 4σρ = (σ − 1)2 + 4σρ > 0, ∀σ, ρ > 0, the original has 3 real eigenvalues, with one becoming
unstable when ρ > 1. Notice that this is a new type of saddle, since the system is 3-dimensional and thus
we have two incoming directions and one outgoing direction.

4. Find the characteristic equation for the eigenvalues of the Jacobian matrix at the other two fixed points.

At C+ and C− we have,

J − λ1 =




−σ − λ σ 0

1 −1− λ ∓


β(ρ− 1)

±


β(ρ− 1) ±


β(ρ− 1) −β − λ



 .

Taking the determinant we get λ3 + (σ + β + 1)λ2 + (ρ+ σ)βλ+ 2βσ(ρ− 1) = 0.

1Lorenz (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences.
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5. Seeking solutions of the form λ = iω, where ω ∈ R show that there is a pair of pure imaginary eigenvalues

when ρ = σ

σ+β+3
σ−β−1


.

Plugging in λ = iω, we get

−iω3 − (σ + β + 1)ω2 + i(ρ+ σ)βω + 2βσ(ρ− 1) = 0

Taking the real and imaginary parts to zero we findm

Re(·) = 0 ⇒ω2 = −2βσ(ρ− 1)

σ + β + 1

Im(·) = 0 ⇒ω3 = −(ρ+ σ)βω ⇒ ω2 = −(ρ+ σ)β

Equating the real and imaginary parts we find,

ρH = σ
σ + β + 3

σ − β − 1
.

6. Assume now that the roots of the characteristic equation at C± for ρ > 1 yield two complex conjugate
eigenvalues and a real eigenvalue: λ1,2 = a ± ib, λ3 = c, with a, b, c ∈ R. Keeping σ and β constant,
vary ρ to find that that at ρH a pair of complex conjugate eigenvalues crosses the imaginary axis. Find a
relationship between σ and β such that the crossing occurs from stable to unstable linear dynamics.

With λ1,2 = a± ib and λ3 = c, we have

(λ− λ1)(λ− λ2)(λ− λ3) = 0

λ3 − (2a+ c)λ2 + (|λ1,2|2 + 2ac)λ− |λ1,2|2c = 0.

Equating coefficients with the same powers of λ we find,

σ + β + 1 = −(2a+ c)

β(ρ+ σ) = |λ1,2|2 + 2ac

2βσ(ρ− 1) = −|λ1,2|2c.

Thus, c = −(σ + β + 1 + 2α), (ρ + σ)βc = 2ac2 − 2βσ(ρ − 1), such that −(σ + β + 1 + 2a)(ρ + σ)β =
2a(σ + β + 1 + 2c)2 − 2σβ(ρ − 1). Differentiating with respect ρ, then setting ρ = ρH ⇒ α(ρH) = 0, we
get,

∂ρα|ρ=ρH =
β(σ − β − 1)

2 [β(ρH + σ) + (σ + β + 1)2]
> 0, ∀σ > β + 1.

Therefore, the eigenvalues cross the imaginary axis with a nonzero positive speed when σ > β + 1.

7. Optional: Defining  = ρ−1/2, show that for ρ ≪ 1 we can rewrite Eq. 1 as,






u̇ = v − σu

v̇ = −uw − v

ẇ = uv − β(w + σ)

.

Find two conserved quantities in the limit ρ → ∞. Is the new system volume preserving for ρ → ∞?
Discuss.

Scaling (x, y, z) as x = u/, y = v/(2σ) and z = (w/σ + 1)/2 and defining t = τ we find,






u̇ = v − σu

v̇ = −uw − v

ẇ = uv − β(w + σ)

.

In the limit ρ → ∞,  → 0 and as such,






u̇ = v

v̇ = −uw

ẇ = uv

.

Using this, we can define two conserved quantities: α1 = u2 − 2w and α2 = v2 + w2, since α̇1 = 0 and
α̇2 = 0. The existence of this integrals suggests that the general trajectories in the ρ → ∞ are closed
orbits. In fact, we see that proceeding as in 1.) we find that V̇ = 0, so volumes are preserved by the flow
indicating conservative dynamics.
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2 One-dimensional maps

1. Consider the logistic map xn+1 = µxn(1 − xn) for 0 ≤ xn ≤ 1 and 0 ≤ µ ≤ 4. Find all the fixed points
and characterize their stability.

For a discrete map, fixed points are solutions of xn+1 = f(xn) so we need to find

x∗ = µx∗(1− x∗)

µx2 − (µ− 1)x = 0

x∗ = 0


x∗ = (1− µ−1).

Which means that the second fixed point only exists when µ > 1. To determine the stability of the fixed
points of a map, consider the time evolution of a perturbation around a fixed point xn = x∗ + δn

x∗ + δn+1 = f(x∗ + δn) = f(x∗) + δnf
′(x∗) +O(δ2n)

δn+1 = f ′(x∗)δn = λδn

since f(x∗) = x∗. The solution to this linear map is δn = λnδ0 and thus if |λ| = |f ′(x∗)| < 1 we have a
stable fixed point, and if |λ| = |f ′(x∗)| > 1 we have an unstable fixed point. In the case |λ| = 1 we have a
marginal case, which requires the use of the O(δ2n) terms to determine the local stability. In the case of the
logistic equation we get f ′(x∗) = µ(1− 2x∗). Therefore, at the origin x∗ = 0 we have |λ| = µ so the origin
is stable when µ < 1 and unstable when µ > 1. The other fixed point has f ′(x∗) = 2− µ ⇒ |λ| = |2− µ|
so it is stable for 1 < µ < 3 and unstable for µ > 3.

2. Show that for µ > 3 the logistic map has a 2-cycle. (Hint: look for a fixed point of the second-iterate map
f(f(x)) = x).

A 2-cycle exists when f(f(p)) = p: we iterate the system twice and return to the same point; p is a fixed
point of the second iterate map.

f(f(p)) = p

µ2x(1− x) [1− µx(1− x)]− x = 0,

So we have a 4th order polynomial to solve and find the fixed points. However, notice that the fixed
points of the map x∗ = f(x∗) are also fixed points of x∗ = f(f(x∗)), and therefore we already have two of
the roots of the equation. To get the other two we can factor these out to find,

f(f(p)) = p

x(µx− µ+ 1)

−1− µ+ µ2x+ µx− µ2x2


= 0,

and thus we only need to find the roots of the quadratic equation,

−1− µ+ µ2x+ µx− µ2x2 = 0

x =
µ(µ+ 1)±


µ2(µ+ 1)2 − 4µ2(1 + µ)

2µ2

x =
µ+ 1±


(µ+ 1)2 − 4µ2(1 + µ)

2µ

x =
µ+ 1±


(µ− 3)(µ+ 1)

2µ
,

which is real for µ > 3. Thus a two-cycle exists for µ > 3.

3. Show that the 2-cycle is stable for 3 < µ < 1 +
√
6. (Hint: reduce the problem to a question about the

stability of a fixed point).

To study the stability of the two cycle, we reduce the problem to the stability of a fixed point x = f(f(x)).
Denoting the 2-cycle fixed points as p and q we have

λ =
d

dx
[f(f(x))]x∗=p = f ′(f(p))f ′(p) = f ′(q)f ′(p)

The same is true for the other fixed point due to the symmetry of the final term; this means that when p
bifurcates so does q, and vice-versa. So we get,

λ = µ2(1− 2q)(1− 2q)

= µ2 [1− 2(p+ q) + 4pq]

= µ2

1− 2(µ+ 1)/µ+ 4(µ+ 1)/µ2



λ = 4 + 2µ− µ2.

Therefore, the 2-cycle is stable for |4 + 2µ− µ2| < 1, i.e for 3 < µ < 1 +
√
6
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4. When µ = 4 show that xn = sin2 (2nθπ) solves the logistic equation. Find θ in terms of the initial
condition. Discuss how this solution highlights two key features of chaos: stretching and folding.

Starting from x0 = sin2 (θπ) we get,

x1 = 4 sin2 (θπ) (1− sin2(θπ))

= 4 sin2(θπ) cos2(θπ)

=
1

2
(1− cos2(4θπ)) = sin2(2θπ),

Similarly from x1,

x2 = 4 sin2 (2θπ) (1− sin2(2θπ))

= 4 sin2(2θπ) cos2(2θπ)

=
1

2
(1− cos2(8θπ)) = sin2(4θπ),

from which we can deduce that xn = sin2 (2nθπ) solves the logistic equation, with θ =
arcsin(

√
x0)

π . You
can also deriving it more generally by making use of more complicated trignometric identities,

xn+1 = 4 sin2 (2nθπ) (1− sin2(2nθπ))

= 4 sin2(2nθπ) cos2(2nθπ)

=
1

2
(1− cos2(2n+2θπ)) = sin2(2n+1θπ),

In some sense, the 2n factor blows up the term argument of the sin, which is then folded into the [−1, 1]
interval by the sin function, highlighting the stretching and folding characteristic of chaos.
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