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In this TD we will explore numerical methods for the characterization of chaotic dynamical systems. Check
https://colab.research.google.com/drive/1Qb5egNHlA7ZIsTyCzqlImjT_yknaE9-B for code and solutions.

1 Lorenz system Consider the Lorenz equations, a simplified model of convection rolls in the atmosphere,






ẋ = σ(y − x)

ẏ = x(ρ− z)− y

ż = xy − βz

. (1)

1. Using numerical simulations, fix σ = 10 and β = 8/3 and explore the behavior of the Lorenz system for
different values of ρ illustrative of the different dynamical regimes discussed in the problem 1.1) of TD5.
You can use the scipy.integrate.odeint package (simulate for T = 50 s with a time step of δt = 0.1 s).

2. Suppose that we slowly turn the ρ knob up and down around ρ = ρH − .2 (check TD5 for ρH) in a
sinusoidal fashion ρ(t) = ρH − 0.2 + sin(ωt) where ω is slow compared to typical orbital frequencies on
the attractor. Numerically integrate the equations, and plot the solutions in whatever way seems most
revealing. Discuss the results.

3. Exploring the exponential divergence of trajectories in chaotic systems. Simulate the Lorenz system in
the standard chaotic regime (σ = 10, β = 8/3 and ρ = 28) for a large time T = 100 s with δt = 0.01 s.
Pick a point in the attractor at random x0, sample a point x at an initial distance δ0 = 10−5 from it,
||x − x0|| = δ, and follow δ(t) = ||x(T ) − x0(t)||. How does this distance evolve in time? Show through
numerical experiments that the distances grow initially as δ(t) ∼ δ0e

λt, where λ is the largest Lyapunov
exponent of the dynamics.

4. Estimate the average rate of separation between trajectories by repeating the calculation in 1.3) N times,
δ̂ = 〈δi(t)〉 = eλtδ0. Estimate the Lyapunov exponent.

5. Compute δ(t) for the different dynamical regimes discussed in 1.1). Discuss the behavior of the curves for
the different dynamical regimes.

6. A positive Lyapunov exponent poses a fundamental upper bound to the predictability horizon of the
dynamical system. Starting from an initial error δ0, how does the timescale to obtain an error ∆ depend
on the Lyapunov exponent? Make the initial error δ0 much smaller and estimate how much better we can
predict the system?

(optional but cool) Lyapunov spectrum estimation In a d-dimensional state-space there are actually d
Lyapunov exponents which measure the rates of separation of nearby trajectories along d orthogonal directions.
These directions are determined by the flow. The stretching factors in each of these chosen directions constitute
the Lyapunov spectrum of the system. To estimate the Lyapunov spectrum, we evolve a sphere of initial
conditions and compute the stretching and contraction of the main axis of the resulting ellipsoid. Given an
initial sphere B0 centered at v0 in Rn, we act on it with a power of the jacobian matrix Jt = Df t(v0), yielding
an ellipsoid Bt = B0Jt whose axis lengths are given by the eigenvalues of JtJ

T
t , σt, Fig. 1

1. In practice, the
direct calculation of Lyapunov exponents for large t is plagued by numerical errors: the existence of strongly
contracting or expanding directions means that for large t there will be very small and very large eigenvalues.
Because of the limited number of digits allowed for each stored number, computer calculations become difficult
when numbers of vastly different sizes are involved in the same calculation. The problem of computing the
eigenvalues thus gets worse as t increases. For this reason, the direct calculation of the ellipsoid B0Jt is usually
avoided. Instead, we follow the ellipsoid as it morphs: JtU = Df(vn−1) · · ·Df(v1)Df(v0)B

0. Starting from an
initial orthonormal basis, we evolve the basis vectors throughDf(v0) and use a Gram-Schmidt orthogonalization
through a QR decomposition to find a new orthogonal basis for the ellipsoids in the t time step. Applying this
transformation t times we can follow how the Lyapunov exponents evolve. In the google colab there is code for
the Lyapunov spectrum estimation, given a python function that evaluate the jacobian at a state-space point
s given parameters σ, ρ and β jacobian(s,sigma,rho,beta).

1See e.g. Alligood, K.T., Sauer, T., Yorke, J.A., & Crawford, J.D. (1997). Chaos: An Introduction to Dynamical Systems
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Figure 1: Schematic of the Lyapunov spectrum estimation

7. Write down the function for estimating the jacobian, and estimate the Lyapunov spectrum of the Lorenz
system in the standard chaotic regime. Compare this results with 1.4) of this TD and with problem 1.2)
of TD5.

2 Lyapunov exponents and entropy: the logistic equation In this section we will glimpse at the deep
connections between entropy and the lyapunov exponents through the Logistic equation xn+1 = µxn(1− xn).

1. Period doubling and orbit diagrams. For a range of values of µ, generate an orbit starting from some
random initial condition x0 and iterate for 200 steps to allow the system to settle down to its steady-state
behavior. Once the transients have decayed, plot many points, e.g. {x100, . . . , x200}, above each value
of µ. Discuss the results. Use the orbit diagram to choose values of µ corresponding to the following
dynamical regimes: stable fixed point at origin, stable fixed point elsewhere, 2-cycle, 4-cycle, 8-cycle and
chaos.

2. Coarse-graining the logistic map. Binarize the dynamics of the Logistic map by setting x(t) > .5 → 1
and x(t) ≤ .5 → 0 and look at the sequence of symbols generated for different illustrative values of µ.
How easy is it to predict the next symbol in a sequence depending on the current symbol? How does this
depend on the different dynamical regimes µ?

3. The unpredictability of the resulting symbolic sequences can be quantified through the entropy rate,
which corresponds to the entropy of the conditional distribution of future states given the current states.
A simple way to estimate the entropy rate is to count the number of distinct sequences of length K, Si

K .
We can count how many sequences of a specific kind we observe by constructing sK = x̂t, x̂t+1, . . . , x̂t+K

(where x̂ represents the discretized x) and counting the number of times we observe a given sequence Si
K

to obtain the probability p(Si
K) of observing the sequence in the dataset. From this, we can estimate the

sequence entropy, HK = −
N

i p(Si
K) log p(Si

K) and then obtain the entropy rate, or entropy per symbol
by estimating, h = limK→∞HK/K. Estimate the entropy rate h for different values of µ → 4 (going
beyond K = 5 is computationally very expensive). How does this compare the a coin-tossing experiment?
And to 1-dimensional chain Ising spins at high temperature?

4. In a 1-d discrete map xn+1 = f(xn), show that the Lyapunov exponent can be simply estimated by,

λ = lim
n→∞

1

n

n−1

i=0

log |f ′(xi)| (2)

5. As you probably suspected, the unpredictability of the dynamics is related to the positive Lyapunov ex-
ponents, which capture the degree by which two nearby trajectories diverge in time and therefore how
fast the system becomes unpredictable. In fact, the Pesin identity2 dictates that for systems such as the
logistic map, the Kolmogorov-Sinai entropy rate h should correspond to the sum of positive Lyapunov
exponents, h =


λi>0 λi (the overall rate of expansion of phase space volumes). Using numerical simula-

tions, show that there is a correspondence between the Lyapunov exponent and the entropy rate for the
Logistic map with µ → 4.

6. Estimate the Lyapunov exponents in the range µ ∈ [3.4, 4[ and discuss in light of the results from 2.1).

2Pesin, Y. B. (1977). ”Characteristic Lyapunov Exponents and Smooth Ergodic Theory”
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