ICFP M1 - Dynamical Systems and Chaos - TD nº8 - Solutions Markov Processes

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

A random process X_{t} can be viewed as a family of random numbers, indexed by the label t. For each time t, X_{t} may obey a different probability distribution $p(x, t)$. The values of the random process at different times t, t^{\prime} may or may not depend on each other. The conditional probability $p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}, \ldots x_{1}, t_{1}\right)$ is defined as the probability of $X_{t_{n}}$ taking the value x_{n}, given that $X_{t_{i}}$ takes the value x_{i} for each $i \in\{1, \ldots, n-1\}$. If

$$
\begin{equation*}
p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n}\right) \tag{1}
\end{equation*}
$$

X_{t} is a purely random process, where the values of X_{t} at different times are independent, which cannot describe a physical continuous dependence on time. The second simplest case,

$$
\begin{equation*}
p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right), \tag{2}
\end{equation*}
$$

defines a Markov process. One also calls $p\left(x, t \mid x^{\prime}, t^{\prime}\right)$ transition probability.

Basics of Markov Chains.

1. Show that for Markov process, the n-point joint probability density reduces to

$$
\begin{equation*}
p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right) p\left(x_{n-1}, t_{n-1} \mid x_{n-2}, t_{n-2}\right) \ldots p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) p\left(x_{1}, t_{1}\right) . \tag{3}
\end{equation*}
$$

2. Show further that this implies

$$
\begin{equation*}
p\left(x_{3}, t_{3} \mid x_{1}, t_{1}\right)=\int p\left(x_{3}, t_{3} \mid x_{2}, t_{2}\right) p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) \mathrm{d} x_{2} \tag{4}
\end{equation*}
$$

This relation is known as Chapman-Kolmogorov equation.
3. (Bonus) For pure Brownian motion, the transition probability is:

$$
p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)=\frac{1}{\sqrt{4 \pi\left(t_{2}-t_{1}\right)}} e^{\frac{-\left(x_{2}-x_{1}\right)^{2}}{4\left(t_{2}-t_{1}\right)}}
$$

meaning that they depend only on the difference in positions and times. Show that such transition probability satisfies the Chapman-Kolmogorov equation.

The Master Equation. Consider the transition probability from some state $x^{\prime \prime}$ at time t to another state x at time $t+\Delta t$ for Δt small,

$$
\begin{equation*}
p\left(x, t+\Delta t \mid x^{\prime \prime}, t\right)=(1-a(x, t) \Delta t) \delta\left(x-x^{\prime \prime}\right)+W\left(x, x^{\prime \prime}, t\right) \Delta t+O\left(\Delta t^{2}\right) . \tag{5}
\end{equation*}
$$

Here the term involving $\delta\left(x-x^{\prime \prime}\right)$ is the probability to be at the same point after Δt, while $W\left(x, x^{\prime \prime}, t\right)$ (the rate function) is the probability to transition from $x^{\prime \prime}$ to x within the time interval Δt.
4. Determine $a(x, t)$ from the constraint of normalisation.
5. Use the Chapman-Kolmogorov equation to show that

$$
\begin{equation*}
\partial_{t} p\left(x, t \mid x^{\prime}, t^{\prime}\right)=\int\left[W\left(x, x^{\prime \prime}, t\right) p\left(x^{\prime \prime}, t \mid x^{\prime}, t^{\prime}\right)-W\left(x^{\prime \prime}, x, t\right) p\left(x, t \mid x^{\prime}, t^{\prime}\right)\right] \mathrm{d} x^{\prime \prime} \tag{6}
\end{equation*}
$$

This is the so-called continuous-time master equation, which implies,

$$
\begin{equation*}
\partial_{t} p(x, t)=\int\left[W\left(x, x^{\prime}, t\right) p\left(x^{\prime}, t\right)-W\left(x^{\prime}, x, t\right) p(x, t)\right] \mathrm{d} x^{\prime} \tag{7}
\end{equation*}
$$

The Fokker-Planck Equation. We now want to perform an expansion to find a partial differential equation describing our process.
6. Write $W\left(x, x^{\prime}, t\right)=w\left(x^{\prime}, r, t\right)$ with $r=x-x^{\prime}$. Show that the Master equation implies

$$
\begin{equation*}
\partial_{t} p(x, t)=\int[w(x-r, r, t) p(x-r, t)-w(x,-r, t) p(x, t)] \mathrm{d} r . \tag{8}
\end{equation*}
$$

Expand the first argument of $w(x-r, r, t) p(x-r, t)$ around x (Kramers-Moyale expansion) to show that

$$
\begin{equation*}
\partial_{t} p(x, t)=\sum_{n=1}^{\infty}\left(-\partial_{x}\right)^{n}\left[D_{n}(x, t) p(x, t)\right], \tag{9}
\end{equation*}
$$

where $D_{n}=\frac{1}{n!} \int w(x, r, t) r^{n} \mathrm{~d} r$. This series may terminate at order 2 , in which case we obtain the FokkerPlanck equation:

$$
\begin{equation*}
\partial_{t} p(x, t)=-\partial_{x}\left[D_{1}(x, t) p(x, t)\right]+\partial_{x}^{2}\left[D_{2}(x, t) p(x, t)\right] . \tag{10}
\end{equation*}
$$

7. Show that the Fokker-Planck equation can be written as a conservation law $\partial_{t} p=\partial_{x} J$, write down J.
8. Assume $x \in \mathbb{R}$ and $p(x, t) \xrightarrow{x \rightarrow \pm \infty} 0$ sufficiently fast. What equation does the mean $\langle x\rangle$ obey?
9. Given two solutions $p_{1}(x, t), p_{2}(x, t)$ of the Fokker-Planck equation starting from different initial conditions, consider $H(t)=\int p_{1} \ln \left(p_{1} / p_{2}\right) \mathrm{d} x$, that we assume well defined. Show that $H(t) \geq 0$ and that $\frac{\mathrm{d}}{\mathrm{d} t} H(t) \leq 0$. What does this tell us about the long-time behaviour of the solutions? Discuss.

Correction

1. First simplify the notation by letting $x_{i}, t_{i} \equiv " i$ ". Use the definition of conditional probabilities, then the Markov property, iterate:

$$
\begin{align*}
p(n ; n-1 ; \ldots ; 1) \stackrel{\text { def }}{=} \underbrace{p(n \mid n-1 ; \ldots ; 1)}_{=p(n \mid n-1)} & =\underbrace{p(n-1 \mid n-2 ; \ldots ; 1)}_{p(n-1 \mid n-2)} p(n-2 ; \ldots ; 1) \tag{11}
\end{align*} \underbrace{p(n-1 ; \ldots ; 1)}=\ldots=p(n \mid n-1) \ldots p(2 \mid 1) p(1)
$$

2. Introducing a dummy variable which is marginalised out gives

$$
\begin{equation*}
p(3 ; 1)=p(3 \mid 1) p(1)=\int \mathrm{d} x_{2} p(3 ; 2 ; 1)=\int \mathrm{d} x_{2} p(3 \mid 2) p(2 \mid 1) p(1) \tag{12}
\end{equation*}
$$

Dividing by $p(1)$, we find the Chapman-Kolmogorov equation,

$$
\begin{equation*}
p(3 \mid 1)=\int \mathrm{d} x_{2} p(3 \mid 2) p(2 \mid 1), \tag{13}
\end{equation*}
$$

as given.
3. Substituting the given distribution, one finds

$$
\begin{equation*}
I \equiv \int \mathrm{~d} x_{2} p(3 \mid 2) p(2 \mid 1)=\int \mathrm{d} x_{2} \frac{1}{\sqrt{(4 \pi)^{2}\left(t_{3}-t_{2}\right)\left(t_{2}-t_{1}\right)}} \exp \left\{-\left(\frac{\left(x_{3}-x_{2}\right)^{2}}{4\left(t_{3}-t_{2}\right)}+\frac{\left(x_{2}-x_{1}\right)^{2}}{4\left(t_{2}-1\right)}\right)\right\} \tag{14}
\end{equation*}
$$

Reducing the argument of exp to a common denominator and completing the squares gives an exponent of

$$
\begin{gather*}
\left(\frac{\left(x_{3}-x_{2}\right)^{2}}{4\left(t_{3}-t_{2}\right)}+\frac{\left(x_{2}-x_{1}\right)^{2}}{4\left(t_{2}-t_{1}\right)}\right) \tag{15}\\
=-\frac{\left(t_{3}-t_{1}\right)}{4\left(t_{3}-t_{2}\right)\left(t_{2}-t_{1}\right)}\left[x_{2}-\frac{x_{3}\left(t_{2}-t_{1}\right)+x_{1}\left(t_{3}-t_{2}\right)}{\left(t_{3}-t_{1}\right)}\right]^{2}-\frac{\left(x_{3}-x_{1}\right)^{2}}{4\left(t_{3}-t_{1}\right)} \tag{16}
\end{gather*}
$$

The x_{2} integral is just a Gaussian integral, yielding

$$
\begin{equation*}
\frac{1}{\sqrt{4 \pi\left(t_{3}-t_{1}\right)}} \exp \left\{-\frac{\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(x_{3}-x_{1}\right)^{2}}{4\left(t_{2}-t_{1}\right)\left(t_{3}-t_{2}\right)\left(t_{3}-t_{1}\right)}\right\}=p(3 \mid 1) . \tag{17}
\end{equation*}
$$

4. Integrating over x using $\int \mathrm{d} x p\left(x, t+\Delta t \mid x^{\prime \prime}, t\right)=1$ gives

$$
\begin{equation*}
a\left(x^{\prime \prime}, t\right)=\int \mathrm{d} x W\left(x, x^{\prime \prime}, t\right) \tag{18}
\end{equation*}
$$

5. The Chapman-Kolmogorov equation gives

$$
\begin{align*}
p\left(x, t+\Delta t \mid x^{\prime}, t^{\prime}\right) & =\int \mathrm{d} x^{\prime \prime} p\left(x, t+\Delta t \mid x^{\prime \prime}, t\right) p\left(x^{\prime \prime}, t \mid x^{\prime}, t^{\prime}\right) \tag{19}\\
& =(1-a(x, t) \Delta t) p\left(x, t \mid x^{\prime}, t^{\prime}\right)+\Delta t \int \mathrm{~d} x^{\prime \prime} W\left(x, x^{\prime \prime}, t\right) p\left(x^{\prime \prime}, t \mid x^{\prime}, t^{\prime}\right)+O\left(\Delta t^{2}\right) \tag{20}\\
& =p\left(x, t \mid x^{\prime}, t^{\prime}\right)+\Delta t \int \mathrm{~d} x^{\prime \prime}\left(W\left(x, x^{\prime \prime}, t\right) p\left(x^{\prime \prime}, t \mid x^{\prime}, t^{\prime}\right)-W\left(x^{\prime \prime}, x, t\right) p\left(x, t \mid x^{\prime}, t^{\prime}\right)\right)+O(\tag{ti}
\end{align*}
$$

Subtracting $p\left(x, t \mid x^{\prime}, t^{\prime}\right)$, dividing through by Δt and letting $\Delta t \rightarrow 0$ gives the given master equation.
6. A Taylor expansion in the first argument about x gives

$$
\begin{align*}
w(x-r, r, t) p(x-r, t) & =w(x, r, t) p(x, t)-r \partial_{x} w(x, r, t) p(x, t)+\frac{r^{2}}{2!} \partial_{x}^{2} w(x, r, t) p(x, t)+\cdots \tag{22}\\
& =\sum_{n=0}^{\infty} \frac{r^{n}}{n!}\left(-\partial_{x}\right)^{n}[w(x, r, t) p(x, t)] . \tag{23}
\end{align*}
$$

Plugging this into the master equation gives

$$
\begin{equation*}
\partial_{t} p(x, t)=\int \mathrm{d} r\left\{\sum_{n=0}^{\infty} \frac{r^{n}}{n!}\left(-\partial_{x}\right)^{n}[w(x, r, t) p(x, t)]-w(x,-r, t) p(x, t)\right\} . \tag{24}
\end{equation*}
$$

Letting $r \rightarrow-r$ in the second term (while paying attention to the limits of integration) yields,

$$
\begin{aligned}
\int_{-\infty}^{\infty}-w(x,-r, t) p(x, t) d r & \rightarrow \int_{+\infty}^{-\infty}-w(x, r, t) p(x, t)(-d r) \\
& =\int_{+\infty}^{-\infty} w(x, r, t) p(x, t) d r \\
& =\int_{-\infty}^{+\infty}-w(x, r, t) p(x, t) d r
\end{aligned}
$$

which cancels the $n=0$ term. We thus get

$$
\begin{equation*}
\partial_{t} p(x, t)=\sum_{n=1}^{\infty}\left(-\partial_{x}\right)^{n}\left[D_{n} p\right], \tag{25}
\end{equation*}
$$

with $D_{n}=\frac{1}{n!} \int \mathrm{d} r w(x, r, t) r^{n}$.
7. $J(\cdot)=-D_{1}(x, t)(\cdot)+\partial_{x}\left[D_{2}(x, t)(\cdot)\right]$.
8. Multiply the Fokker-Planck equation by x and integrate over x to find

$$
\begin{equation*}
\partial_{t}\langle x\rangle=\int x \partial_{t} p(x, t) d x=\int\left[-x \partial_{x}\left(D_{1} p\right)+x \partial_{x}^{2}\left(D_{2} p\right)\right] \mathrm{d} x \stackrel{I B P}{=}\left\langle D_{1}\right\rangle-\left.D_{2} p\right|_{-\infty} ^{\infty}=\left\langle D_{1}\right\rangle . \tag{26}
\end{equation*}
$$

9. We will assume that $H(t)$ exists. This assumption is violated for instance if one of the PDFs p_{1}, p_{2} is a delta function. Using $\log x \leq x-1 \forall x \geq 0$, we have,

$$
\begin{align*}
-\int p_{1} \log \frac{p_{2}}{p_{1}} d x & \geq \int p_{1}\left(\frac{p_{2}}{p_{1}}-1\right) d x \tag{27}\\
& =\int p_{2} d x-\int p_{1} d x=0 \tag{28}\\
& \Rightarrow H(t) \geq 0 \tag{29}
\end{align*}
$$

Now let's derive the behaviour of \dot{H}, introducing $R=\frac{p_{1}}{p_{2}}$:

$$
\begin{align*}
\dot{H}(t) & =\int \dot{p}_{1} \log \frac{p_{1}}{p_{2}}+\frac{p_{1} p_{2}}{p_{1}}\left(\frac{\dot{p_{1}}}{p_{2}}-\frac{p_{1}}{p_{2}^{2}} \dot{p}_{2}\right) d x \tag{30}\\
& =\int \dot{p_{1}} \log R d x-\int R \dot{p}_{2} d x \tag{31}
\end{align*}
$$

where the integral in $\dot{p_{1}}$ vanishes because $p_{1}(\pm \infty)=0$. Introducing the Fokker-planck differential operator and its adjoint, $\mathcal{L}(\cdot)=-\partial_{x}\left(D_{1}(\cdot)\right)+\partial_{x}^{2}\left(D_{2}(\cdot)\right)$ and $\mathcal{L}^{+}(\cdot)=\left[D_{1} \partial_{x}+D_{2} \partial_{x}^{2}\right](\cdot)$ we find

$$
\begin{align*}
\dot{H}(t) & =\int\left[\dot{p}_{1} \ln (R)-\dot{p}_{2} \frac{p_{1}}{p_{2}}\right] \mathrm{d} x=\int\left[\left(\mathcal{L} p_{1}\right) \ln (R)-R \dot{p}_{2}\right] \mathrm{d} x \tag{32}\\
& =\int\left[p_{1}\left(\mathcal{L}^{+} \ln (R)\right)-R \dot{p}_{2}\right] \mathrm{d} x . \tag{33}
\end{align*}
$$

Now $\mathcal{L}^{+} \ln (R)=\left(D_{1}+D_{2} \partial_{x}\right)\left[R^{-1} \partial_{x} R\right]=R^{-1} D_{1} \partial_{x} R-D_{2}\left(\partial_{x} \log R\right)^{2}+R^{-1} D_{2} \partial_{x}^{2} R=R^{-1} \mathcal{L}^{+} R-$ $D_{2}\left(\partial_{x} \log R\right)^{2}$ and thus

$$
\begin{align*}
\dot{H} & =\int p_{1} R^{-1} \mathcal{L}^{+} R-R \dot{p}_{2}-p_{1} D_{2}\left(\partial_{x} \ln R\right)^{2} \mathrm{~d} x \tag{34}\\
& =\int p_{2} \mathcal{L}^{+} R-R \dot{p}_{2}-p_{1} D_{2}\left(\partial_{x} \ln R\right)^{2} \mathrm{~d} x \tag{35}\\
& =\int R \mathcal{L} p_{2}-R \dot{p}_{2}-p_{1} D_{2}\left(\partial_{x} \ln R\right)^{2} \mathrm{~d} x \tag{36}\\
& =\int R\left(\dot{p}_{2}-\dot{p}_{2}\right)-p_{1} D_{2}\left(\partial_{x} \ln R\right)^{2} \mathrm{~d} x \tag{37}\\
& =-\int p_{1} D_{2}\left(\partial_{x} \ln R\right)^{2} \mathrm{~d} x \leq 0 . \tag{38}
\end{align*}
$$

Therefore, as long as $\partial_{x} \ln R \neq 0, H(t)$ decreases. However, it cannot decrease indefinitely, since $H(t) \geq 0$. Thus, as $t \rightarrow \infty, \partial_{x} \ln (R) \rightarrow 0$, i.e. $R \rightarrow$ const. $\equiv 1$ by normalisation of p_{i}. Hence $p_{1} \equiv p_{2}$ in the limit $t \rightarrow \infty$ and the same is true for for any other PDF p_{3}, meaning that all solutions of the FokkerPlanck equation coincides after long time, no matter from which initial conditions one starts, for general coefficients, as long as $H(t)$ exists, which is often the case.

