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A random process Xt can be viewed as a family of random numbers, indexed by the label t. For each time
t, Xt may obey a different probability distribution p(x, t). The values of the random process at different times
t, t′ may or may not depend on each other. The conditional probability p(xn, tn|xn−1, tn−1, ...x1, t1) is defined
as the probability of Xtn taking the value xn, given that Xti takes the value xi for each i ∈ {1, ..., n− 1}. If

p(xn, tn|xn−1, tn−1; ...;x1, t1) = p(xn, tn), (1)

Xt is a purely random process, where the values of Xt at different times are independent, which cannot describe
a physical continuous dependence on time. The second simplest case,

p(xn, tn|xn−1, tn−1; ...;x1, t1) = p(xn, tn|xn−1, tn−1), (2)

defines a Markov process. One also calls p(x, t|x′, t′) transition probability.

Basics of Markov Chains.

1. Show that for Markov process, the n-point joint probability density reduces to

p(xn, tn; ...;x1, t1) = p(xn, tn|xn−1, tn−1)p(xn−1, tn−1|xn−2, tn−2)...p(x2, t2|x1, t1)p(x1, t1). (3)

2. Show further that this implies

p(x3, t3|x1, t1) =


p(x3, t3|x2, t2)p(x2, t2|x1, t1)dx2. (4)

This relation is known as Chapman-Kolmogorov equation.

3. (Bonus) For pure Brownian motion, the transition probability is:

p(x2, t2|x1, t1) =
1

4π(t2 − t1)
e

−(x2−x1)
2

4(t2−t1) ,

meaning that they depend only on the difference in positions and times. Show that such transition
probability satisfies the Chapman-Kolmogorov equation.

The Master Equation. Consider the transition probability from some state x′′ at time t to another
state x at time t+∆t for ∆t small,

p(x, t+∆t|x′′, t) = (1− a(x, t)∆t)δ(x− x′′) +W (x, x′′, t)∆t+O(∆t2). (5)

Here the term involving δ(x − x′′) is the probability to be at the same point after ∆t, while W (x, x′′, t)
(the rate function) is the probability to transition from x′′ to x within the time interval ∆t.

4. Determine a(x, t) from the constraint of normalisation.

5. Use the Chapman-Kolmogorov equation to show that

∂tp(x, t|x′, t′) =
 

W (x, x′′, t)p(x′′, t|x′, t′)−W (x′′, x, t)p(x, t|x′, t′)

dx′′. (6)

This is the so-called continuous-time master equation, which implies,

∂tp(x, t) =

 
W (x, x′, t)p(x′, t)−W (x′, x, t)p(x, t)


dx′. (7)
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The Fokker-Planck Equation. We now want to perform an expansion to find a partial differential
equation describing our process.

6. Write W (x, x′, t) = w(x′, r, t) with r = x− x′. Show that the Master equation implies

∂tp(x, t) =


[w(x− r, r, t)p(x− r, t)− w(x,−r, t)p(x, t)] dr. (8)

Expand the first argument of w(x− r, r, t)p(x− r, t) around x (Kramers-Moyale expansion) to show that

∂tp(x, t) =

∞

n=1

(−∂x)
n [Dn(x, t)p(x, t)], (9)

where Dn = 1
n!


w(x, r, t)rndr. This series may terminate at order 2, in which case we obtain the Fokker-

Planck equation:
∂tp(x, t) = −∂x[D1(x, t)p(x, t)] + ∂2

x[D2(x, t)p(x, t)]. (10)

7. Show that the Fokker-Planck equation can be written as a conservation law ∂tp = ∂xJ , write down J .

8. Assume x ∈ R and p(x, t)
x→±∞→ 0 sufficiently fast. What equation does the mean 〈x〉 obey?

9. Given two solutions p1(x, t), p2(x, t) of the Fokker-Planck equation starting from different initial conditions,
consider H(t) =


p1ln(p1/p2)dx, that we assume well defined. Show that H(t) ≥ 0 and that d

dtH(t) ≤ 0.
What does this tell us about the long-time behaviour of the solutions? Discuss.

Correction

1. First simplify the notation by letting xi, ti ≡ ”i”. Use the definition of conditional probabilities, then the
Markov property, iterate:

p(n;n− 1; ...; 1)
def
= p(n|n− 1; ...; 1)  

=p(n|n−1)

p(n− 1; ...; 1)  
=p(n− 1|n− 2; ...; 1)  

p(n−1|n−2)

p(n−2;...;1)

= ... = p(n|n− 1)...p(2|1)p(1) (11)

2. Introducing a dummy variable which is marginalised out gives

p(3; 1) = p(3|1)p(1) =


dx2p(3; 2; 1) =


dx2p(3|2)p(2|1)p(1). (12)

Dividing by p(1), we find the Chapman-Kolmogorov equation,

p(3|1) =


dx2p(3|2)p(2|1), (13)

as given.

3. Substituting the given distribution, one finds

I ≡


dx2p(3|2)p(2|1) =


dx2
1

(4π)2(t3 − t2)(t2 − t1)
exp


−

(x3 − x2)

2

4(t3 − t2)
+

(x2 − x1)
2

4(t2 − 1)


(14)

Reducing the argument of exp to a common denominator and completing the squares gives an exponent
of


(x3−x2)2

4(t3−t2)
+ (x2−x1)2

4(t2−t1)


(15)

= − (t3−t1)
4(t3−t2)(t2−t1)


x2 − x3(t2−t1)+x1(t3−t2)

(t3−t1)

2
− (x3−x1)2

4(t3−t1)
(16)

The x2 integral is just a Gaussian integral, yielding

1
4π(t3 − t1)

exp


−(t2 − t1)(t3 − t2)(x3 − x1)

2

4(t2 − t1)(t3 − t2)(t3 − t1)


= p(3|1). (17)

4. Integrating over x using

dxp(x, t+∆t|x′′, t) = 1 gives

a(x′′, t) =


dxW (x, x′′, t). (18)
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5. The Chapman-Kolmogorov equation gives

p(x, t+∆t|x′, t′) =


dx′′p(x, t+∆t|x′′, t)p(x′′, t|x′, t′) (19)

= (1− a(x, t)∆t)p(x, t|x′, t′) +∆t


dx′′W (x, x′′, t)p(x′′, t|x′, t′) +O(∆t2) (20)

= p(x, t|x′, t′) +∆t


dx′′(W (x, x′′, t)p(x′′, t|x′, t′)−W (x′′, x, t)p(x, t|x′, t′)) +O(∆t2)(21)

Subtracting p(x, t|x′, t′), dividing through by ∆t and letting ∆t → 0 gives the given master equation.

6. A Taylor expansion in the first argument about x gives

w(x− r, r, t)p(x− r, t) = w(x, r, t)p(x, t)− r∂xw(x, r, t)p(x, t) +
r2

2!
∂2
xw(x, r, t)p(x, t) + · · · (22)

=

∞

n=0

rn

n!
(−∂x)

n[w(x, r, t)p(x, t)]. (23)

Plugging this into the master equation gives

∂tp(x, t) =


dr

 ∞

n=0

rn

n!
(−∂x)

n[w(x, r, t)p(x, t)]− w(x,−r, t)p(x, t)


. (24)

Letting r → −r in the second term (while paying attention to the limits of integration) yields,

 ∞

−∞
−w(x,−r, t)p(x, t)dr →

 −∞

+∞
−w(x, r, t)p(x, t)(−dr)

=

 −∞

+∞
w(x, r, t)p(x, t)dr

=

 +∞

−∞
−w(x, r, t)p(x, t)dr

which cancels the n = 0 term. We thus get

∂tp(x, t) =

∞

n=1

(−∂x)
n[Dnp], (25)

with Dn = 1
n!


drw(x, r, t)rn.

7. J(·) = −D1(x, t)(·) + ∂x[D2(x, t)(·)].

8. Multiply the Fokker-Planck equation by x and integrate over x to find

∂t〈x〉 =


x∂tp(x, t)dx =


[−x∂x(D1p) + x∂2

x(D2p)]dx
IBP
= 〈D1〉 − D2p|∞−∞ = 〈D1〉. (26)

9. We will assume that H(t) exists. This assumption is violated for instance if one of the PDFs p1, p2 is a
delta function. Using log x ≤ x− 1∀x ≥ 0, we have,

−


p1 log
p2
p1

dx ≥


p1


p2
p1

− 1


dx (27)

=


p2dx−


p1dx = 0 (28)

⇒ H(t) ≥ 0 (29)

Now let’s derive the behaviour of Ḣ, introducing R = p1
p2
:

Ḣ(t) =


ṗ1 log

p1
p2

+
p1p2
p1


ṗ1
p2

− p1
p22

ṗ2


dx (30)

=


ṗ1 logRdx−


Rṗ2dx, (31)

where the integral in ṗ1 vanishes because p1(±∞) = 0. Introducing the Fokker-planck differential operator
and its adjoint, L(·) = −∂x(D1(·)) + ∂2

x(D2(·)) and L+(·) = [D1∂x +D2∂
2
x](·) we find

Ḣ(t) =

 
ṗ1ln(R)− ṗ2

p1
p2


dx =


[(Lp1)ln(R)−Rṗ2] dx (32)

=


[p1(L+ln(R))−Rṗ2]dx. (33)
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Now L+ln(R) = (D1 + D2∂x)[R
−1∂xR] = R−1D1∂xR − D2(∂x logR)2 + R−1D2∂

2
xR = R−1L+R −

D2(∂x logR)2 and thus

Ḣ =


p1R

−1L+R−Rṗ2 − p1D2(∂xlnR)2dx (34)

=


p2L+R−Rṗ2 − p1D2(∂xlnR)2dx (35)

=


RLp2 −Rṗ2 − p1D2(∂xlnR)2dx (36)

=


R(ṗ2 − ṗ2)− p1D2(∂xlnR)2dx (37)

= −


p1D2(∂xlnR)2dx ≤ 0. (38)

Therefore, as long as ∂xlnR ∕= 0, H(t) decreases. However, it cannot decrease indefinitely, since H(t) ≥ 0.
Thus, as t → ∞, ∂xln(R) → 0, i.e. R → const. ≡ 1 by normalisation of pi. Hence p1 ≡ p2 in the
limit t → ∞ and the same is true for for any other PDF p3, meaning that all solutions of the Fokker-
Planck equation coincides after long time, no matter from which initial conditions one starts, for general
coefficients, as long as H(t) exists, which is often the case.
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