ICFP M1 - Dynamical Systems and Chaos - TD nº8 - Exercises Markov Processes

Baptiste Coquinot, Stephan Fauve
baptiste.coquinot@ens.fr

2023-2024

A random process X_{t} can be viewed as a family of random numbers, indexed by the label t. For each time t, X_{t} may obey a different probability distribution $p(x, t)$. The values of the random process at different times t, t^{\prime} may or may not depend on each other. The conditional probability $p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}, \ldots x_{1}, t_{1}\right)$ is defined as the probability of $X_{t_{n}}$ taking the value x_{n}, given that $X_{t_{i}}$ takes the value x_{i} for each $i \in\{1, \ldots, n-1\}$. If

$$
\begin{equation*}
p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n}\right), \tag{1}
\end{equation*}
$$

X_{t} is a purely random process, where the values of X_{t} at different times are independent, which cannot describe a physical continuous dependence on time. The second simplest case,

$$
\begin{equation*}
p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right), \tag{2}
\end{equation*}
$$

defines a Markov process. One also calls $p\left(x, t \mid x^{\prime}, t^{\prime}\right)$ transition probability.

Basics of Markov Chains.

1. Show that for Markov process, the n-point joint probability density reduces to

$$
\begin{equation*}
p\left(x_{n}, t_{n} ; \ldots ; x_{1}, t_{1}\right)=p\left(x_{n}, t_{n} \mid x_{n-1}, t_{n-1}\right) p\left(x_{n-1}, t_{n-1} \mid x_{n-2}, t_{n-2}\right) \ldots p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) p\left(x_{1}, t_{1}\right) . \tag{3}
\end{equation*}
$$

2. Show further that this implies

$$
\begin{equation*}
p\left(x_{3}, t_{3} \mid x_{1}, t_{1}\right)=\int p\left(x_{3}, t_{3} \mid x_{2}, t_{2}\right) p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right) \mathrm{d} x_{2} \tag{4}
\end{equation*}
$$

This relation is known as Chapman-Kolmogorov equation.
3. (Bonus) For pure Brownian motion, the transition probability is:

$$
p\left(x_{2}, t_{2} \mid x_{1}, t_{1}\right)=\frac{1}{\sqrt{4 \pi\left(t_{2}-t_{1}\right)}} e^{\frac{-\left(x_{2}-x_{1}\right)^{2}}{4\left(t_{2}-t_{1}\right)}}
$$

meaning that they depend only on the difference in positions and times. Show that such transition probability satisfies the Chapman-Kolmogorov equation.

The Master Equation. Consider the transition probability from some state $x^{\prime \prime}$ at time t to another state x at time $t+\Delta t$ for Δt small,

$$
\begin{equation*}
p\left(x, t+\Delta t \mid x^{\prime \prime}, t\right)=(1-a(x, t) \Delta t) \delta\left(x-x^{\prime \prime}\right)+W\left(x, x^{\prime \prime}, t\right) \Delta t+O\left(\Delta t^{2}\right) . \tag{5}
\end{equation*}
$$

Here the term involving $\delta\left(x-x^{\prime \prime}\right)$ is the probability to be at the same point after Δt, while $W\left(x, x^{\prime \prime}, t\right)$ (the rate function) is the probability to transition from $x^{\prime \prime}$ to x within the time interval Δt.
4. Determine $a(x, t)$ from the constraint of normalisation.
5. Use the Chapman-Kolmogorov equation to show that

$$
\begin{equation*}
\partial_{t} p\left(x, t \mid x^{\prime}, t^{\prime}\right)=\int\left[W\left(x, x^{\prime \prime}, t\right) p\left(x^{\prime \prime}, t \mid x^{\prime}, t^{\prime}\right)-W\left(x^{\prime \prime}, x, t\right) p\left(x, t \mid x^{\prime}, t^{\prime}\right)\right] \mathrm{d} x^{\prime \prime} \tag{6}
\end{equation*}
$$

This is the so-called continuous-time master equation, which implies,

$$
\begin{equation*}
\partial_{t} p(x, t)=\int\left[W\left(x, x^{\prime}, t\right) p\left(x^{\prime}, t\right)-W\left(x^{\prime}, x, t\right) p(x, t)\right] \mathrm{d} x^{\prime} \tag{7}
\end{equation*}
$$

The Fokker-Planck Equation. We now want to perform an expansion to find a partial differential equation describing our process.
6. Write $W\left(x, x^{\prime}, t\right)=w\left(x^{\prime}, r, t\right)$ with $r=x-x^{\prime}$. Show that the Master equation implies

$$
\begin{equation*}
\partial_{t} p(x, t)=\int[w(x-r, r, t) p(x-r, t)-w(x,-r, t) p(x, t)] \mathrm{d} r . \tag{8}
\end{equation*}
$$

Expand the first argument of $w(x-r, r, t) p(x-r, t)$ around x (Kramers-Moyale expansion) to show that

$$
\begin{equation*}
\partial_{t} p(x, t)=\sum_{n=1}^{\infty}\left(-\partial_{x}\right)^{n}\left[D_{n}(x, t) p(x, t)\right], \tag{9}
\end{equation*}
$$

where $D_{n}=\frac{1}{n!} \int w(x, r, t) r^{n} \mathrm{~d} r$. This series may terminate at order 2 , in which case we obtain the FokkerPlanck equation:

$$
\begin{equation*}
\partial_{t} p(x, t)=-\partial_{x}\left[D_{1}(x, t) p(x, t)\right]+\partial_{x}^{2}\left[D_{2}(x, t) p(x, t)\right] . \tag{10}
\end{equation*}
$$

7. Show that the Fokker-Planck equation can be written as a conservation law $\partial_{t} p=\partial_{x} J$, write down J.
8. Assume $x \in \mathbb{R}$ and $p(x, t) \xrightarrow{x \rightarrow \pm \infty} 0$ sufficiently fast. What equation does the mean $\langle x\rangle$ obey?
9. Given two solutions $p_{1}(x, t), p_{2}(x, t)$ of the Fokker-Planck equation starting from different initial conditions, consider $H(t)=\int p_{1} \ln \left(p_{1} / p_{2}\right) \mathrm{d} x$, that we assume well defined. Show that $H(t) \geq 0$ and that $\frac{\mathrm{d}}{\mathrm{d} t} H(t) \leq 0$. What does this tell us about the long-time behaviour of the solutions? Discuss.
