
ICFP M1 - Phase Transitions – TD no 3 – Solution
The Critical Temperature of the Ising Model in 2D

Baptiste Coquinot, Guilhem Semerjian
baptiste.coquinot@ens.fr

2023-2024

1 High temperature expansion

1. Each site has 4 neighbours. There are N sites. Therefore the sum over nearest neighbours with
periodic boundary conditions consists of 4N/2 = 2N terms.

2. From TD 2, Question 2.1, we know that cosh(x)(1 + ϵ tanh(x)) = eϵx, where ϵ = ±1. Therefore
eβJσiσj = c(1 + tσiσj), with c = cosh(βJ) and t = tanh(βJ).

3. We start from the definition of the partition function

ZN (β) =
∑
σ

e−βH(σ)

=
∑
σ

∏
⟨ij⟩

eβJσiσj

= c2N
∑
σ

∏
⟨ij⟩

(1 + tσiσj).

As before, the product over pairs of nearest neighbour sites consists of 2N factors, hence the
expansion of the product contains 22N terms, as for each factor one takes either 1 or tσiσj .

4. Blindly expanding the product gives

ZN (β) = c2N
∑
σ

1 + t
∑
⟨ij⟩

σiσj + t2
∑

⟨ij⟩<⟨kl⟩

σiσjσkσl + ...


Let us represent this expansion graphically:

• a diagram is a 2d square lattice with N sites connected by thin or thick lines

• a thin line between site i and j carries value 1

• a thick line between sites i and j carries value tσiσj

• the value of a graph is the product of the values of all lines

For example:

i j
k

l

= t2σiσjσkσl

This means that

ZN (β) = c2N
∑
σ

(sum of all possible distinct diagrams) .

Now note that∑
σ

σaσb...σn =

{
2N if each index (a, ..., n) appears an even number of times

0 otherwise
(1)
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Therefore the only diagrams that will survive the sum
∑

σ are those where there is an even
number of thick lines meeting at each site. This boils down to the condition that the thick lines
form closed curves (including the case of no curve at all) and we call this a closed graph. An
example is

= t6. (2)

In general, a closed graph can consist of several closed curves that are allowed to intersect (but
not to overlap). A valid closed graph is for example

5. Keeping only closed graphs, the partition function becomes a power series in t = tanh(βJ) with
coefficients aN,n corresponding to the number of possible closed graphs on a lattice with N sites
using exactly n thick lines:

ZN (β) = (2c2)N
∞∑
n=0

aN,nt
n (3)

The name ”high temperature expansion” is justified since tanh(βJ) → 0 as T = 1/β → ∞. So
we develop in a small parameter and can neglect higher order terms for which aN,n can be very
difficult to calculate.

6. • aN,0 = 1 (empty diagram)

• aN,1 = aN,2 = aN,3 = 0 (the square is the first possible closed graph)

• aN,4 = N (a unit square whose bottom left corner can be any of the N sites)

• aN,2n+1 = 0 (uneven number of thick lines cannot form closed structures)

• aN,6 = 2N (one rectangle, as in (2), for each of the N sites, with horizontal or vertical
orientation)

Let us make a side remark. The coefficients aN,4 and aN,6 are proportional to N ; this is not
the case for larger values of n. For instance aN,8 contains both contributions of order N2

(corresponding to diagrams containing two unit squares at arbitrary positions) and of order N
(2× 2 squares and 1× 3 rectangles). In general the diagrams with k connected components will
have degeneracies of order Nk. As a matter of fact the aN,n are the coefficients of the expansion
for the partition function Z, which is not extensive: it is the free energy, proportional to lnZ,
which is extensive. It is a general feature in diagrammatic expansions that taking logarithms
amounts to select only the connected diagrams.

2 Low temperature expansion

7. The order of magnitude that differentiates between ”high” and ”low” temperatures is fixed by J .
If βJ � 1 one is in the high temperature regime, for βJ � 1 in the low temperature one.

8. There are two configuration with a minimal energy of E0 = −2JN : all spins up or all spins
down.
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9. The first excited state is the lowest energy state with one spin flipped. We can flip this spin at
all N lattice sites and there are two lowest energy states. Therefore

#(states with E1) ≡ 2×N.

A single spin flip on a 2d lattice increases the energy by ∆E = 4× 2J . Graphically this can be
seen by drawing thick lines on the dual lattice (also called domain walls) to separate spins of
different orientation and associating a factor 2J with each thick line.

10. The next higher energy state is built from the lowest energy state by flipping two neighbouring
spins. Then ∆E = 6× 2J . The corresponding graph is a rectangle. It has 2N possibilities to be
placed on the dual lattice. Taking the degeneracy of the lowest energy states into account this
gives

#(states with E2) = 2× 2N.

.

11. see next question

12. For low temperatures, only states with low energy will contribute to the partition function.
Therefore we can expand it in terms of the energy levels E0, E1 = E0+4×2J , E2 = E0+6×2J ,...
or more generally in terms of E0 + n2J for n = 0, 1, 2, .... Surely, not all of these energy levels
exist, so we have to weigh each term by a multiplicity factor 2bN,n (the 2 accounts for the
degeneracy of the ground state) which is zero if the energy level does not exist.

ZN (β) =
∑
σ

e−βH(σ)

=
∞∑
n=0

2bN,ne
−β(E0+n2J)

= 2e2NβJ
∞∑
n=0

bN,n(e
−2βJ)n

Comparing to our results above we find

• bN,0 = 1 (this corresponds to E0)

• bN,1 = bN,2 = bN,3 = 0

• bN,4 = N (this corresponds to E1)

• bN,5 = 0

• bN,6 = 2N (this corresponds to E2)

In general, bN,n is the number of ways we can draw closed curves on the dual lattice with N sites
using exactly n thick lines. Due to the periodic boundary conditions, the dual lattice is equal to
the actual lattice, and so we have bN,n = aN,n.
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3 Critical temperature

13. To compute the free energy per spin f(β) = − 1
β lim
N→∞

1
N logZN (β) we will be using the notation

AN (x) :=
∑∞

n=0 aN,nx
n and g(x) := lim

N→∞
1
N logAN (x):

• High temperature expansion: ZN (β) = (2 cosh2(βJ))NAN (tanh(βJ)

fH(β) = − 1

β

(
log(2 cosh2(βJ)) + g(tanh(βJ)

)
(4)

• Low temperature expansion: ZN (β) = 2e2NβJAN (e−2βJ)

fL(β) = − 1

β

(
2βJ + g(e−2βJ)

)
(5)

14. If f(β) is singular at a unique point βc then there must be a singularity in the function g at a
point where its arguments in the high and low temperature case are equal: e−2βJ = tanh(βJ).

One can solve this equation by noting that tanh(x) = ex−e−x

ex+e−x = e2x−1
e2x+1

. Denoting X = e2βJ one

has 1
X = X−1

X+1 , i.e. X
2 − 2X − 1 = 0, whose positive root is 1 +

√
2. This yields

βcJ =
1

2
log(1 +

√
2) . (6)

Note that the duality between the high and low temperature expansions gives further information
on the free energy: suppose one knows f(β) for some value β. Then from the high temperature
expansion one knows the function g(x) in x = tanh(βJ), and thus from the low temperature
expansion one knows f in β∗(β) such that e−2β∗J = x = tanh(βJ). One can check that β 7→
β∗(β) is an involution mapping the high temperature regime β ∈ [0, βc] to the low temperature
regime β ∈ [βc,∞) and vice versa, admitting the critical temperature βc as its unique fixed
point.

4 Exact results

15. The singularity in this expression can only come from a vanishing argument of the logarithm.
As cos(kx)+cos(ky) is maximal in kx = ky = 0, where it is equal to 2, a singularity will appear if
(cosh(2βJ))2 = 2 sinh(2βJ). As cosh(x)2 − 2 sinh(x) = 1+ sinh(x)2 − 2 sinh(x) = (1− sinh(x))2

is ≥ 0 for all x ≥ 0 and vanishes only in x = log(1+
√
2), this confirms the determination of the

critical temperature previously obtained by the simpler duality argument.

16. One has sinh(2βcJ) = 1, hence sinh(2βJ) ∼ 1+C(Tc −T ) when T → T−
c , with C some positive

constant. This gives msp(T ) ∼ (1−(1−4C(Tc−T )))
1
8 ∝ (Tc−T )

1
8 , which shows that the critical

exponent β is equal to 1
8 for the Ising model in two dimensions.
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