ICFP M1 - Phase Transitions - TD n ${ }^{\circ} 3$ - Solution The Critical Temperature of the Ising Model in 2D

Baptiste Coquinot, Guilhem Semerjian
baptiste.coquinot@ens.fr

2023-2024

1 High temperature expansion

1. Each site has 4 neighbours. There are N sites. Therefore the sum over nearest neighbours with periodic boundary conditions consists of $4 N / 2=2 N$ terms.
2. From TD 2, Question 2.1, we know that $\cosh (x)(1+\epsilon \tanh (x))=e^{\epsilon x}$, where $\epsilon= \pm 1$. Therefore $e^{\beta J \sigma_{i} \sigma_{j}}=c\left(1+t \sigma_{i} \sigma_{j}\right)$, with $c=\cosh (\beta J)$ and $t=\tanh (\beta J)$.
3. We start from the definition of the partition function

$$
\begin{aligned}
Z_{N}(\beta) & =\sum_{\underline{\sigma}} e^{-\beta H(\underline{\sigma})} \\
& =\sum_{\underline{\sigma}} \prod_{\langle i j\rangle} e^{\beta J \sigma_{i} \sigma_{j}} \\
& =c^{2 N} \sum_{\underline{\sigma}} \prod_{\langle i j\rangle}\left(1+t \sigma_{i} \sigma_{j}\right)
\end{aligned}
$$

As before, the product over pairs of nearest neighbour sites consists of $2 N$ factors, hence the expansion of the product contains $2^{2 N}$ terms, as for each factor one takes either 1 or $t \sigma_{i} \sigma_{j}$.
4. Blindly expanding the product gives

$$
Z_{N}(\beta)=c^{2 N} \sum_{\underline{\sigma}}\left(1+t \sum_{\langle i j\rangle} \sigma_{i} \sigma_{j}+t^{2} \sum_{\langle i j\rangle<\langle k l\rangle} \sigma_{i} \sigma_{j} \sigma_{k} \sigma_{l}+\ldots\right)
$$

Let us represent this expansion graphically:

- a diagram is a 2 d square lattice with N sites connected by thin or thick lines
- a thin line between site i and j carries value 1
- a thick line between sites i and j carries value $t \sigma_{i} \sigma_{j}$
- the value of a graph is the product of the values of all lines

For example:

This means that

$$
Z_{N}(\beta)=c^{2 N} \sum_{\underline{\sigma}}(\text { sum of all possible distinct diagrams })
$$

Now note that

$$
\sum_{\underline{\sigma}} \sigma_{a} \sigma_{b} \ldots \sigma_{n}=\left\{\begin{array}{l}
2^{N} \text { if each index }(a, \ldots, n) \text { appears an even number of times } \tag{1}\\
0 \text { otherwise }
\end{array}\right.
$$

Therefore the only diagrams that will survive the sum $\sum_{\boldsymbol{\sigma}}$ are those where there is an even number of thick lines meeting at each site. This boils down to the condition that the thick lines form closed curves (including the case of no curve at all) and we call this a closed graph. An example is

In general, a closed graph can consist of several closed curves that are allowed to intersect (but not to overlap). A valid closed graph is for example

5. Keeping only closed graphs, the partition function becomes a power series in $t=\tanh (\beta J)$ with coefficients $a_{N, n}$ corresponding to the number of possible closed graphs on a lattice with N sites using exactly n thick lines:

$$
\begin{equation*}
Z_{N}(\beta)=\left(2 c^{2}\right)^{N} \sum_{n=0}^{\infty} a_{N, n} t^{n} \tag{3}
\end{equation*}
$$

The name "high temperature expansion" is justified since $\tanh (\beta J) \rightarrow 0$ as $T=1 / \beta \rightarrow \infty$. So we develop in a small parameter and can neglect higher order terms for which $a_{N, n}$ can be very difficult to calculate.
6. $-a_{N, 0}=1$ (empty diagram)

- $a_{N, 1}=a_{N, 2}=a_{N, 3}=0$ (the square is the first possible closed graph)
- $a_{N, 4}=N$ (a unit square whose bottom left corner can be any of the N sites)
- $a_{N, 2 n+1}=0$ (uneven number of thick lines cannot form closed structures)
- $a_{N, 6}=2 N$ (one rectangle, as in (2), for each of the N sites, with horizontal or vertical orientation)

Let us make a side remark. The coefficients $a_{N, 4}$ and $a_{N, 6}$ are proportional to N; this is not the case for larger values of n. For instance $a_{N, 8}$ contains both contributions of order N^{2} (corresponding to diagrams containing two unit squares at arbitrary positions) and of order N (2×2 squares and 1×3 rectangles). In general the diagrams with k connected components will have degeneracies of order N^{k}. As a matter of fact the $a_{N, n}$ are the coefficients of the expansion for the partition function Z, which is not extensive: it is the free energy, proportional to $\ln Z$, which is extensive. It is a general feature in diagrammatic expansions that taking logarithms amounts to select only the connected diagrams.

2 Low temperature expansion

7. The order of magnitude that differentiates between "high" and "low" temperatures is fixed by J. If $\beta J \ll 1$ one is in the high temperature regime, for $\beta J \gg 1$ in the low temperature one.
8. There are two configuration with a minimal energy of $E_{0}=-2 J N$: all spins up or all spins down.
9. The first excited state is the lowest energy state with one spin flipped. We can flip this spin at all N lattice sites and there are two lowest energy states. Therefore

$$
\#\left(\text { states with } E_{1}\right) \equiv 2 \times N
$$

A single spin flip on a 2 d lattice increases the energy by $\Delta E=4 \times 2 J$. Graphically this can be seen by drawing thick lines on the dual lattice (also called domain walls) to separate spins of different orientation and associating a factor $2 J$ with each thick line.

10. The next higher energy state is built from the lowest energy state by flipping two neighbouring spins. Then $\Delta E=6 \times 2 J$. The corresponding graph is a rectangle. It has $2 N$ possibilities to be placed on the dual lattice. Taking the degeneracy of the lowest energy states into account this gives

$$
\#\left(\text { states with } E_{2}\right)=2 \times 2 N
$$

11. see next question
12. For low temperatures, only states with low energy will contribute to the partition function. Therefore we can expand it in terms of the energy levels $E_{0}, E_{1}=E_{0}+4 \times 2 J, E_{2}=E_{0}+6 \times 2 J, \ldots$ or more generally in terms of $E_{0}+n 2 J$ for $n=0,1,2, \ldots$. Surely, not all of these energy levels exist, so we have to weigh each term by a multiplicity factor $2 b_{N, n}$ (the 2 accounts for the degeneracy of the ground state) which is zero if the energy level does not exist.

$$
\begin{aligned}
Z_{N}(\beta) & =\sum_{\underline{\sigma}} e^{-\beta H(\underline{\sigma})} \\
& =\sum_{n=0}^{\infty} 2 b_{N, n} e^{-\beta\left(E_{0}+n 2 J\right)} \\
& =2 e^{2 N \beta J} \sum_{n=0}^{\infty} b_{N, n}\left(e^{-2 \beta J}\right)^{n}
\end{aligned}
$$

Comparing to our results above we find

- $b_{N, 0}=1$ (this corresponds to E_{0})
- $b_{N, 1}=b_{N, 2}=b_{N, 3}=0$
- $b_{N, 4}=N$ (this corresponds to E_{1})
- $b_{N, 5}=0$
- $b_{N, 6}=2 N$ (this corresponds to E_{2})

In general, $b_{N, n}$ is the number of ways we can draw closed curves on the dual lattice with N sites using exactly n thick lines. Due to the periodic boundary conditions, the dual lattice is equal to the actual lattice, and so we have $b_{N, n}=a_{N, n}$.

3 Critical temperature

13. To compute the free energy per spin $f(\beta)=-\frac{1}{\beta} \lim _{N \rightarrow \infty} \frac{1}{N} \log Z_{N}(\beta)$ we will be using the notation $A_{N}(x):=\sum_{n=0}^{\infty} a_{N, n} x^{n}$ and $g(x):=\lim _{N \rightarrow \infty} \frac{1}{N} \log A_{N}(x):$

- High temperature expansion: $Z_{N}(\beta)=\left(2 \cosh ^{2}(\beta J)\right)^{N} A_{N}(\tanh (\beta J)$

$$
\begin{equation*}
f_{H}(\beta)=-\frac{1}{\beta}\left(\log \left(2 \cosh ^{2}(\beta J)\right)+g(\tanh (\beta J))\right. \tag{4}
\end{equation*}
$$

- Low temperature expansion: $Z_{N}(\beta)=2 e^{2 N \beta J} A_{N}\left(e^{-2 \beta J}\right)$

$$
\begin{equation*}
f_{L}(\beta)=-\frac{1}{\beta}\left(2 \beta J+g\left(e^{-2 \beta J}\right)\right) \tag{5}
\end{equation*}
$$

14. If $f(\beta)$ is singular at a unique point β_{c} then there must be a singularity in the function g at a point where its arguments in the high and low temperature case are equal: $e^{-2 \beta J}=\tanh (\beta J)$. One can solve this equation by noting that $\tanh (x)=\frac{e^{x}-e^{-x}}{e^{x}+e^{-x}}=\frac{e^{2 x}-1}{e^{2 x}+1}$. Denoting $X=e^{2 \beta J}$ one has $\frac{1}{X}=\frac{X-1}{X+1}$, i.e. $X^{2}-2 X-1=0$, whose positive root is $1+\sqrt{2}$. This yields

$$
\begin{equation*}
\beta_{\mathrm{c}} J=\frac{1}{2} \log (1+\sqrt{2}) . \tag{6}
\end{equation*}
$$

Note that the duality between the high and low temperature expansions gives further information on the free energy: suppose one knows $f(\beta)$ for some value β. Then from the high temperature expansion one knows the function $g(x)$ in $x=\tanh (\beta J)$, and thus from the low temperature expansion one knows f in $\beta^{*}(\beta)$ such that $e^{-2 \beta^{*} J}=x=\tanh (\beta J)$. One can check that $\beta \mapsto$ $\beta^{*}(\beta)$ is an involution mapping the high temperature regime $\beta \in\left[0, \beta_{\mathrm{c}}\right]$ to the low temperature regime $\beta \in\left[\beta_{\mathrm{c}}, \infty\right)$ and vice versa, admitting the critical temperature β_{c} as its unique fixed point.

4 Exact results

15. The singularity in this expression can only come from a vanishing argument of the logarithm. As $\cos \left(k_{x}\right)+\cos \left(k_{y}\right)$ is maximal in $k_{x}=k_{y}=0$, where it is equal to 2 , a singularity will appear if $(\cosh (2 \beta J))^{2}=2 \sinh (2 \beta J)$. As $\cosh (x)^{2}-2 \sinh (x)=1+\sinh (x)^{2}-2 \sinh (x)=(1-\sinh (x))^{2}$ is ≥ 0 for all $x \geq 0$ and vanishes only in $x=\log (1+\sqrt{2})$, this confirms the determination of the critical temperature previously obtained by the simpler duality argument.
16. One has $\sinh \left(2 \beta_{\mathrm{c}} J\right)=1$, hence $\sinh (2 \beta J) \sim 1+C\left(T_{\mathrm{c}}-T\right)$ when $T \rightarrow T_{\mathrm{c}}^{-}$, with C some positive constant. This gives $m_{\text {sp }}(T) \sim\left(1-\left(1-4 C\left(T_{\mathrm{c}}-T\right)\right)\right)^{\frac{1}{8}} \propto\left(T_{\mathrm{c}}-T\right)^{\frac{1}{8}}$, which shows that the critical exponent β is equal to $\frac{1}{8}$ for the Ising model in two dimensions.
