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1. The height of an equilateral triangle with edges of length a is a
√
3
2 , hence !a = a

√
3 and b =

√
3.

There are !N = N/3 spins in the new lattice, as each block contains 3 spins of the original
lattice, and each of the original spin is in exactly one block. The decimation rule is applied
independently in each block, with the correspondance

!σα = +1 ⇔ (σi(α),σj(α),σk(α)) ∈ {(+1,+1,+1), (−1,+1,+1), (+1,−1,+1), (+1,+1,−1)} ,

!σα = −1 ⇔ (σi(α),σj(α),σk(α)) ∈ {(−1,−1,−1), (+1,−1,−1), (−1,+1,−1), (−1,−1,+1)} . (1)

(2)

For each possible value of the new spin !σα there are thus 4 allowed configurations for the three

original spins of the block, hence |C(!σ)| = 4
!N = 4N/3.

2. The definition of !H has been chosen in order to impose the equality of the partition functions
before and after the decimation. Indeed,

!Z =
"

!σ
e−β !H(!σ) =

"

!σ

"

σ∈C(!σ)

e−βH(σ) =
"

σ

e−βH(σ) = Z .

The probability of a configuration !σ in the new system is the sum of the probabilities of the
configurations of the original system that are decimated into !σ, i.e. those of C(!σ):

P !H(!σ) = 1

!Z
e−β !H(!σ) =

1

Z

"

σ∈C(!σ)

e−βH(σ) =
"

σ∈C(!σ)

PH(σ) .

3. (a) A function f(!σ1) of a single Ising spin can be written as a polynomial of !σ1 of degree 1, as

f(!σ1) = f(+1)
1 + !σ1

2
+ f(−1)

1− !σ1
2

= A∅ +A1!σ1

with A∅ =
f(+1) + f(−1)

2
, A1 =

f(+1)− f(−1)

2
.

Reasoning by induction one can generalize this representation for functions of n Ising spins
as

f(!σ1, . . . , !σn) =
"

S⊂{1,...,n}
AS

#

i∈S
!σi , with AS =

1

2n

"

!σ1,...,!σn

f(!σ1, . . . , !σn)
#

i∈S
!σi .

There is a bijective correspondence between the 2n values of f(!σ1, . . . , !σn) and the 2n values
of AS when S runs over the subsets of {1, . . . , n}; to convince yourself of this equivalence
you can use the identity

1

2n

"

!σ1,...,!σn

$
#

i∈S
!σi

%$
#

i∈S′

!σi

%
= δS,S′

for two subsets S and S′ of indices. Another way of picturing this representation is to
expand f as a generic power series for real variables and simplify it using !σ2n

i = 1 and
!σ2n+1
i = !σi for Ising spins.

In the present case we can hence write

!H(!σ1, !σ2, !σ3) = A∅ +A1!σ1 +A2!σ2 +A3!σ3 +A12!σ1!σ2 +A13!σ1!σ3 +A23!σ2!σ3 +A123!σ1!σ2!σ3 .
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(b) According to the inversion formula stated above we can obtain the coefficients A with

AS = − 1

β

1

8

"

!σ1,!σ2,!σ3

$
#

i∈S
!σi

%
ln

&

'
"

σ∈C(!σ)

e−βH(σ)

(

) ,

which could be implemented in a symbolic computation software.

(c) In general all the coefficients AS will be non-zero, which means that the decimation has
generated a pairwise interaction of range 2 (A13 ∕= 0) and an interaction between triplets of
spins (A123 ∕= 0) that were not present in the original Hamiltonian. One way to show that
these coefficients are non-zero is to compute them in perturbation for small J1 and J2, one
finds (after a rather cumbersome computation) that A13 is of order J2

1 , and A123 of order
J2
1J2.

4. One has

e−βH(!σ) =
"

σ∈C(!σ)

e−βH(σ) =
"

σ∈C(!σ)

e−β(H(σ)−H0(σ))e−βH0(σ) = Z0(!σ)〈e−β(H(σ)−H0(σ))〉0,!σ .

The inequality comes from Jensen inequality, that states that for a convex function f the average
of the function is larger than the function of the average, i.e. E[f(X)] ≥ f(E[X]), for any random
variable X with an expectation denoted E. Applying it here with f(x) = ex, that is indeed
convex, and 〈•〉0,!σ playing the role of E[•], one obtains

e−βH(!σ) ≥ Z0(!σ)e−β〈H(σ)−H0(σ)〉0,!σ .

Taking logarithm and dividing by β (which reverses the direction of the inequality) one obtains
the equation of the text,

!H(!σ) ≤ − 1

β
lnZ0(!σ) + 〈H(σ)−H0(σ)〉0,!σ . (3)

The inequality becomes an equality if one takes H0(σ) = H(σ), but in this case one is back to
the original problem that is in general impossible to solve. The point of the variational method
is to choose some trial Hamiltonian H0 simple enough for the right hand side of the last equation
to be computable exactly.

5. The crucial simplifying feature of this variational Hamiltonian H0 is the absence of interaction
between spins belonging to distinct blocks, the latter thus decouple one from the other. This
leads for the computation of Z0(!σ):

Z0(!σ) = eNJ0

!N#

α=1

*

+++,
"

σi(α),σj(α),σk(α)

sign (σi(α)+σj(α)+σk(α))=!σα

eJ1(σi(α)σj(α)+σi(α)σk(α)+σj(α)σk(α))

-

.../

= eNJ0(e3J1 + 3 e−J1)
!N .

Indeed, among the four configurations allowed for the three spins inside the α-th block, given
explicitly in equation (1), one of them has the three spins equal to !σα, yielding the term e3J1 ,
and the three others have two spins equal to !σα, the last one equal to −!σα, which gives the term
3 e−J1 . Note that Z0(!σ) is independent of !σ.
The computation of 〈σi〉0,!σ is similar, denoting α(i) the block to which i belongs one can factor
out the other blocks and write

〈σi〉0,!σ =
1

e3J1 + 3 e−J1

"

σ1,σ2,σ3

sign (σ1+σ2+σ3)=!σα(i)

σ1 eJ1(σ1σ2+σ1σ3+σ2σ3) = !σα(i)
e3J1 + (2− 1)e−J1

e3J1 + 3 e−J1

= !σα(i)
e3J1 + e−J1

e3J1 + 3 e−J1
,
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exploiting the description of the four relevant configurations explained above.

If i and j belong to different blocks the spins σi and σj are independent under the Gibbs-Boltzman
law induced by the Hamiltonian H0, hence in this case

〈σiσj〉0,!σ = 〈σi〉0,!σ〈σj〉0,!σ .

6. We can use now the results of the previous question to compute the right hand side of equation
(3). The first term is easily obtained from

− 1

β
lnZ0(!σ) = −3J0 !N

β
− 1

β
!N ln(e3J1 + 3e−J1) .

Moreover in H(σ)−H0(σ) the interactions inside the blocks cancel out, yielding

〈H(σ)−H0(σ)〉0,!σ =

0
−J1

β

"

〈i,j〉
σiσj −

J2
β

N"

i=1

σi +
J1
β

!N"

α=1

"

〈i,j〉∈α
σiσj

1

0,!σ

=

0
− J1

β

"

〈i,j〉
α(i) ∕=α(j)

σiσj −
J2
β

N"

i=1

σi

1

0,!σ

= −J1
β

"

〈i,j〉
α(i) ∕=α(j)

〈σiσj〉0,!σ − J2
β

N"

i=1

〈σi〉0,!σ

= −2J1
β

"

〈α,β〉
!σα!σβ

2
e3J1 + e−J1

e3J1 + 3e−J1

32

− 3J2
β

!N"

α=1

!σα
e3J1 + e−J1

e3J1 + 3e−J1
,

where the factors 2 and 3 follow from noting that there are two edges between sites of the
adjacent blocks α and β, and 3 sites in each block α. Plugging these two results in the right
hand side of equation (3) one obtains the result of the text.

7. The fixed points are the solution of the following system of equations:

4
5

6
J1 = 2 J1

7
e3J1+e−J1

e3J1+3 e−J1

82

J2 = 3 J2

7
e3J1+e−J1

e3J1+3 e−J1

8 .

The first one is independent of J2; it admits the solution J1 = 0, in which case the second one
simplifies into J2 = 3

2J2, which only admits J2 = 0 as a solution. Suppose now that J1 ∕= 0 is
solution of the first equation; then one must have

e3J1 + e−J1

e3J1 + 3 e−J1
=

1√
2

⇒ e4J1
2
1− 1√

2

3
=

3√
2
− 1 ⇒ J1 =

1

4
ln(1 + 2

√
2) = J1c .

Plugging this value of J1 in the second equation yields J2 =
3√
2
J2, which only admits J2 = 0 as

a solution.

To summarize, there are 2 fixed points, a trivial one (J∗
1 , J

∗
2 ) = (0, 0) in which there is no

interaction before and after the renormalization transformation, and a non-trivial one (J∗
1 , J

∗
2 ) =

(14 ln(1 + 2
√
2), 0), with no magnetic field but a non-zero interaction between neighboring spins.

To determine the stability of these fixed points one has to compute the eigenvalues of the Jacobian
of the transformation, i.e. of the matrix

M =

$
∂ !J1
∂J1

∂ !J2
∂J1

∂ !J1
∂J2

∂ !J2
∂J2

%
.
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Figure 1: Flow of the renormalisation group transformations.

After a short computation one finds for this matrix, at the trivial and non-trivial fixed points
respectively:

Mt(0, 0) =

2
1/2 0
0 3/2

3
, Mnt =

$
1 + 8−5

√
2

2 ln(1 + 2
√
2) 0

0 3/
√
2

%
.

These matrices being diagonal, their eigenvalues can be simply read as their diagonal elements.

At each step of the renormalization transformation, a vector of parameters (J1, J2) close to
a given fixed point is multiplied by the associated Jacobian matrix M . After n steps it gets
multiplied by Mn, hence an eigenvalue larger than 1 leads to a growth in the corresponding
eigenvector direction, which is thus unstable. On the contrary an eigenvalue smaller than 1
corresponds to a stable direction, leading to a contraction under the iterations. The trivial fixed
point is stable in the J1 direction and unstable in the J2 one: indeed a magnetic field breaks
explicitly the spin-flip symmetry and gets amplified by the renormalization transformations.
On the other hand the non-trivial fixed point is unstable in both directions, see Fig. 1 for an
illustration. Consider in particular the behavior along the J2 = 0 axis: values of J1 ∈ (0, J1c) are
attracted towards J1 = 0 by the iterations, this high temperature phase leads to a macroscopic
non-interacting effective model. On the contrary the low temperature phase J1 > J1c sees
its coupling constant grow under iterations, the non-trivial fixed point is thus a critical point
separating these two behaviors.

8. Writing λ1 = 1 + 8−5
√
2

2 ln(1 + 2
√
2) = by1 and λ2 = 3√

2
= by2 with the scale factor b =

√
3 one

finds the numerical values y1 ≈ 0, 882 and y2 ≈ 1, 368. The critical exponents are then deduced
from the formulas of the text,

α ≈ −0, 267 , β ≈ 0, 716 , γ ≈ 0, 834 , δ ≈ 2, 165 , ν ≈ 1, 134 , η ≈ 1, 264 .

The exact value are y1 = 1 and y2 = 15/8 = 1, 875; in the approximation performed in this
problem it is y2 that is the most inexact, hence the exponents that only depend on y1 are
relatively better evaluated.
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