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Graphene is a honeycomb lattice of carbon atoms with one valence electron. The remaining three
electrons per carbon atom are involved in the formation of strong covalent σ bonds, and can be consid-
ered as frozen as far as the low energy electronic properties of graphene are concerned. Here we study
the low energy properties of graphene.

The graphene lattice is made of two triangular Bravais sublattices spanned by
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They are denoted A and B according to Fig. 1.
Every atom of A (respectively B) has three nearest neighbors in B (respectively A), whose relative

positions are given by the three unit vectors
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The distance a between two carbon atoms (a = 1.42 rA) is set to unity. The reciprocal lattice is spanned
by the vectors b1 and b2 defined by

ai · bj = 2πδij. (3)

The low energy properties of graphene are captured by a tight-binding approximation, in which we
consider a spinless nearest-neighbor model on an infinite honeycomb lattice:

H = t ∑
<i,j>

#
|φi〉〈φj|+ h.c.

$
where 〈φi|φj〉 = δi,j. (4)

The state |φi〉 describes the bound state in which the electron is localized around the carbon atom i,
whose position is ri. The corresponding wavefunctions are of the form 〈r|φi〉 = φ(r − ri).

1. Rewrite the tight-binding Hamiltonian in second quantization.

2. The honeycomb lattice is invariant under discrete translations of a1 and a2. We denote by Tα the
unitary operator that translates a single electron by aα. What is Tα in first and second quantization?
Check that [H, Tα] = 0. What is the standard method to exploit this symmetry ?

3. Since the honeycomb lattice is made of two Bravais sublattices A and B, one has to define two
Fourier modes (one for each sublattice). In this tutorial we work with the following convention for
the Fourier transform

|ψA
q 〉 = ∑

r∈A
eiq·r|φr〉 |ψB

q〉 = ∑
r∈B

eiq·(r−d3)|φr〉 = ∑
r∈A

eiq·r|φr+d3〉. (5)

Figure 1: Crystallographic structure of Graphene.
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Check that these states are indeed eigenstates of Tα. Check that |ψA
q 〉 = |ψA

q+bi
〉 and |ψB

q〉 = |ψB
q+bi

〉.
What is the Brillouin zone ? What is its area ABZ?

4. What are the creation operators c†
A(q) and c†

B(q) corresponding to |ψA
q 〉 and |ψB

q〉 ? What is their
inverse Fourier transform ? Compute their anti-commutation relations {cα(q), c†

α′(q
′)}.

5. For a system that can contain many electrons, we can also consider the operators Tα that translates
all electrons. They are defined by

TαcrT †
α = cr+aα Tα|0〉 = |0〉 (6)

Show that states of the form c†
A(q1) . . . c†

A(qm)c
†
B(qm+1) . . . c†

B(qn)|0〉 are eigenstates of both Tα and
Tα.

6. Show that the tight-binding Hamiltonian in momentum space is

H =
!

BZ

dq
ABZ

c†(q)h(q)c(q) where c(q) =
%

cA(q)
cB(q)

&
, h(q) =

%
0 f (q)

f (q)∗ 0

&
(7)

with f (q) = t(1 + eiq·a1 + eiq·a2).

7. What is the one-body spectrum of H ? What are the eigenstates ? Write the Hamiltonian in diagonal
form

H =
!

BZ

dq
ABZ

(d†
+(q)ε+(q)d+(q) + d†

−(q)ε−(q)d−(q)). (8)

where d± and ε± are to specify.

8. We want to describe undopped graphene. What is the corresponding filling of the spinless tight-
binding model ?

9. What is the Fermi surface?

10. We define the corners of the Brillouin zone by

Kζ = ζ
b1 − b2

3
. (9)

where ζ = ±1 is called the chirality. Check that to first order in q we have: f (Kζ + q) ≈
−ζvF|q|eiζθq with vF = 3t/2 and θq is the polar angle of the wave vector q with respect to the
direction a1 − a2. The quantity ζθq is called in the literature the pseudospin.

11. What are the excitation energies in the neighborhood of Kζ (to first order in q) ?

12. Show that the mode q eigenvectors near K± are 1√
2

%
1

∓ζe−iζθθ

&
.

13. Argue that the low-energy effective Hamiltonian of graphene at half-filling is given by:

H = ∑
ζ

vF

!

BZ

dq
ABZ

c†
ζ(q)(−ζqxσx + qyσy)cζ(q) (10)

which is the sum of two Dirac Hamiltonians. At low energy graphene has effectively two indepen-
dent Dirac fermions.

Besides translation invariance, the tight-binding model of graphene has many symmetries.

14. Chirality symmetry is a unitary operator Γ such that

ΓciΓ† =

'
ci if i ∈ A
−ci if i ∈ B (11)

Check that Γ anti-commute with H. It implies that the energy spectrum of H is symmetric about
zero (show it). What is Γc†

A(q)Γ
† ? Γc†

B(q)Γ
† ? Check that Γd†

±(q)Γ† = d†
∓(q).

15. Time-reversal symmetry is an anti-linear, anti-unitary operator θ defined by

θciθ
† = ci, θc†

i θ† = c†
i . (12)

Show that graphene is invariant under time-reversal symmetry (i.e. [θ,H] = 0). What is θc†
A(q)θ†

? θc†
B(q)θ

† ?

16. Inversion symmetry is a a unitary operator I such that Icr I† = cd3−r. Check that graphene is
invariant under inversion. What is Ic†

A(q)I† ? Ic†
B(q)I†?

17. Show that under time-reversal we have h(q) → h(−q)∗ while under inversion we have h(q) →
σxh(−q)σx. Check this way that graphene is indeed time-reversal and inversion symmetric.

Reminder of Pauli matrices:

σx =

%
0 1
1 0

&
σy =

%
0 −i
i 0

&
σz =

%
1 0
0 −1

&
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