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Graphene is a honeycomb lattice of carbon atoms with one valence electron. The remaining three
electrons per carbon atom are involved in the formation of strong covalent σ bonds, and can be consid-
ered as frozen as far as the low energy electronic properties of graphene are concerned. Here we study
the low energy properties of graphene.

The graphene lattice is made of two triangular Bravais sublattices spanned by
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They are denoted A and B according to Fig. 1.
Every atom of A (respectively B) has three nearest neighbors in B (respectively A), whose relative

positions are given by the three unit vectors

d1 =

!√
3

2
,

1
2

"
, d2 =

!
−
√

3
2

,
1
2

"
, d3 = (0,−1) . (2)

The distance a between two carbon atoms (a = 1.42 rA) is set to unity. The reciprocal lattice is spanned
by the vectors b1 and b2 defined by

ai · bj = 2πδij. (3)

The low energy properties of graphene are captured by a tight-binding approximation, in which we
consider a spinless nearest-neighbor model on an infinite honeycomb lattice:

H = t ∑
<i,j>

#
|φi〉〈φj|+ h.c.

$
where 〈φi|φj〉 = δi,j. (4)

The state |φi〉 describes the bound state in which the electron is localized around the carbon atom i,
whose position is ri. The corresponding wavefunctions are of the form 〈r|φi〉 = φ(r − ri).

1. Rewrite the tight-binding Hamiltonian in second quantization.

We denote c†
i the creation operator of an electron localised on the atom i. Then,

H = t ∑
<i,j>

%
c†

i cj + h.c.
&

where {ci, c†
j } = δi,j. (5)

Figure 1: Crystallographic structure of Graphene.
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2. The honeycomb lattice is invariant under discrete translations of a1 and a2. We denote by Tα the
unitary operator that translates a single electron by aα. What is Tα in first and second quantization?
Check that [H, Tα] = 0. What is the standard method to exploit this symmetry ?

In first quantization the translation operator has the form T0
α = eaα·∇. However, here we assumed

the tight-binding approximation. Therefore, we have to project this operator on the associated sub-
space of the Hilbert space through the projector P = ∑i |φi〉〈φi|. Then, one recovers the expected

Tα = PT0
α P = ∑

i
|φi+aα

〉〈φi|. (6)

In second quantization, we then have

Tα = ∑
i

c†
i+aα

ci. (7)

We now check the commutation with the Hamiltonian:

TαH = t ∑
k
|φk+aα

〉〈φk| ∑
<i,j>

#
|φi〉〈φj|+ h.c.

$
= t ∑

<i,j>

#
|φi+aα

〉〈φj|+ h.c.
$

(8)

HTα = t ∑
<i,j>

#
|φi〉〈φj|+ h.c.

$
∑

k
|φk+aα

〉〈φk| = t ∑
<i,j>

#
|φi〉〈φj−aα

|+ h.c.
$
= TαH (9)

One can therefore diagonalize simultaneously H and Tα. As usual eigenstates of Tα are obtained
by a Fourier transform.

3. Since the honeycomb lattice is made of two Bravais sublattices A and B, one has to define two
Fourier modes (one for each sublattice). In this tutorial we work with the following convention for
the Fourier transform

|ψA
q 〉 = ∑

r∈A
eiq·r|φr〉 |ψB

q〉 = ∑
r∈B

eiq·(r−d3)|φr〉 = ∑
r∈A

eiq·r|φr+d3〉. (10)

Check that these states are indeed eigenstates of Tα. Check that |ψA
q 〉 = |ψA

q+bi
〉 and |ψB

q〉 = |ψB
q+bi

〉.
What is the Brillouin zone ? What is its area ABZ?

Starting with the translation operator, we check that we have eigenvectors:

Tα|ψA
q 〉 = ∑

r∈A
eiq·r|φr+Aα

〉 = e−iq·aα |ψA
q 〉 (11)

and likewise for |ψB
q〉. Since we are dealing with discrete translations, the momentum q is defined

modulo b1 and b2, namely
q ≡ q + bα. (12)

The Brillouin Zone could be chosen (for instance) to be a parallelogram [0, 1[×b1 + [0, 1[×b2, but
the conventional choice is to choose the haxagone centered on zero. The Brillouin area is

ABZ = |b1 ∧ b2| =
4π2

|a1 ∧ a2|
=

8π2

3
√

3
. (13)

4. What are the creation operators c†
A(q) and c†

B(q) corresponding to |ψA
q 〉 and |ψB

q〉 ? What is their
inverse Fourier transform ? Compute their anti-commutation relations {cα(q), c†

α′(q
′)}.

The Fourier transform is

c†
A(q) = ∑

r∈A
eiq·rc†(r) c†

B(q) = ∑
r∈B

eiq·(r−d3)c†(r) = ∑
r∈A

eiq·rc†(r + d3). (14)

The inverse Fourier transform is

c†(r) =
!

BZ
dq
ABZ

e−iq·rc†
A(q) for r ∈, A (15)

c†(r) =
!

BZ
dq
ABZ

e−iq·(r−d3)c†
A(q) for r ∈ B. (16)

For the anti-commutator one gets

{cA(q), c†
A(q

′)} = ∑
r,r′∈A

eiq′·r′−iq·r{c(r), c†(r′)} = ∑
r∈A

ei(q′−q)·r′ = ABZδ(q − q′). (17)
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Likewise,
{cB(q), c†

B(q
′)} = ABZδ(q − q′), (18)

and
{cA(q), c†

B(q
′)} = 0. (19)

5. For a system that can contain many electrons, we can also consider the operators Tα that translates
all electrons. They are defined by

TαcrT †
α = cr+aα Tα|0〉 = |0〉 (20)

Show that states of the form c†
A(q1) . . . c†

A(qm)c
†
B(qm+1) . . . c†

B(qn)|0〉 are eigenstates of both Tα and
Tα.

From TαcrT †
α = cr+aα we deduce

Tαc†
A(q)T †

α = e−iq·aα c†
A(q) (21)

and the same for B. Meanwhile for Tα we have

[Tα, c†
A(q)] = e−iq·aα c†

A(q) (22)

and the same for B. Therefore

Tαc†
A(q1) . . . c†

A(qm)c
†
B(qm+1) . . . c†

B(qn)|0〉 =
!

n

∏
j=1

e−iqj·aα

"
c†

A(q1) . . . c†
A(qm)c

†
B(qm+1) . . . c†

B(qn)|0〉

(23)
while

Tαc†
A(q1) . . . c†

A(qm)c
†
B(qm+1) . . . c†

B(qn)|0〉 =
!

n

∑
j=1

e−iqj·aα

"
c†

A(q1) . . . c†
A(qm)c

†
B(qm+1) . . . c†

B(qn)|0〉

(24)

6. Show that the tight-binding Hamiltonian in momentum space is

H =
!

BZ

dq
ABZ

c†(q)h(q)c(q) where c(q) =
'

cA(q)
cB(q)

(
, h(q) =

'
0 f (q)

f (q)∗ 0

(
(25)

with f (q) = t(1 + eiq·a1 + eiq·a2).

H = t ∑
r∈A

c†
r

!
3

∑
i=1

cr+di

"
+ h.c. (26)

= t ∑
r∈A

c†
r (cr+a1+d3 + cr+a2+d3 + cr+d3) + h.c. (27)

= t ∑
r∈A

!

BZ

dq
ABZ

!

BZ

dq′

ABZ
e−iq·rc†

A(q)(e
iq′·(r+a1) + eiq′·(r+a2) + eiq′·r)cB(q′) + h.c. (28)

=
!

BZ

dq
ABZ

!

BZ

dq′

ABZ
c†

A(q) f (q′)cB(q′) ∑
r∈A

ei(q′−q)·r + h.c. (29)

=
!

BZ

dq
ABZ

c†
A(q) f (q)cB(q′) + h.c. (30)

Adding the hermitian conjugate we recover the expected form.

7. What is the one-body spectrum of H ? What are the eigenstates ? Write the Hamiltonian in diagonal
form

H =
!

BZ

dq
ABZ

(d†
+(q)ε+(q)d+(q) + d†

−(q)ε−(q)d−(q)). (31)

where d± and ε± are to specify.
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To have the spectrum, we need to diagonalise these 2 by 2 matrix h(q), which is straightforward.
We have

h(q) = | f (q)|
'

0 eiϕ(q)

e−iϕ(q) 0

(
where f (q) = | f (q)|eiϕ(q). (32)

Therefore the energies are
ε±(q) = ±| f (q)| (33)

and the corresponding eigenstates are

|u±(q)〉 =
1√
2

'
1

±e−iϕ(q)

(
=

|ψA
q 〉± e−iϕ(q)|ψB

q〉√
2

(34)

The state |u±(q)〉 is a plane wave with quasi-momentum q, and has support on both sublattices (it
is a linear superposition of the states |ψA

q 〉 and |ψB
q〉). The associated creation operators are

d†
±(q) =

c†
A(q)± e−iϕ(q)c†

B(q)√
2

(35)

and they are normalized as

{dα(q), d†
β(q

′)} = 〈uα(q)|uβ(q′)〉 = ABZδα,βδ(q − q′). (36)

8. We want to describe undopped graphene. What is the corresponding filling of the spinless tight-
binding model ?

In graphene each carbon atom contributes one electron. In the tight-binding approxima- tion, each
carbon atom has only one orbital available. Since electrons may occupy either a spin-up or a spin-
down state, there are 2 quantum states per atom. We therefore get that in the absence of doping
graphene is at half filling.

9. What is the Fermi surface?

For our spinless model, half-filling means that the lowest band, with energy −| f (q)|, is filled,
and the upper band is unoccupied. The Fermi surface is where these two bands meet, namely for
f (q) = 0, i.e.

1 + eiq·a1 + eiq·a2 = 0 (37)

Since eiq·ai both have modulus 1, there is only one way for this sum to vanish : 1 + j + j2 = 0. So
there are two possibilities

eiq·a1 = jζ eiq·a2 = j−ζ ζ = ±1 (38)

Decomposing q = q1b1 + q2b2, this means

e2iπq1 = eζ2iπ/3 e2iπq2 = e−ζ2iπ/3 (39)

i.e.
q1 ≡ ζ/3[1] q2 ≡ −ζ/3[1]. (40)

So there are two points in the Brilloin Zone for which f (q) = 0 :

Kζ = ζ
b1 − b2

3
. (41)

This gives two corners of the hexagonal BZ but all corners by symmetries. The FS is not really a
surface, but only points (called Dirac points).

10. We define the corners of the Brillouin zone by

Kζ = ζ
b1 − b2

3
. (42)

where ζ = ±1 is called the chirality. Check that to first order in q we have: f (Kζ + q) ≈
−ζvF|q|eiζθq with vF = 3t/2 and θq is the polar angle of the wave vector q with respect to the
direction a1 − a2. The quantity ζθq is called in the literature the pseudospin.
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From eiKζ ·a1 = jζ and eiKζ ·a2 = j−ζ it follows that

f (Kζ + q) = t
%

jζeiq·a1 + j−ζeiq·a2 + 1
&

(43)

whose linear approximation is

f (Kζ + q) = itq ·
%

jζa1 + j−ζa2

&
= −ζ

3t
2
(qx + iζqy) = −ζvF|q|eiζθq . (44)

11. What are the excitation energies in the neighborhood of Kζ (to first order in q) ?

To first order in q, the eigenenergies are:

ε±(Kζ + q) = ±vF|q|+ O(q2). (45)

We have cones of excitations near the Dirac points (the cone appears if you plot ε±(Kζ + q) as a
function of q).

12. Show that the mode q eigenvectors near K± are 1√
2

'
1

∓ζe−iζθθ

(
.

We have already found the eigenstates of h(q): 1√
2

'
1

∓± e−iϕ(q)

(
where eiϕ = f /| f |. The result

is straightforward using the linearisation of f .

13. Argue that the low-energy effective Hamiltonian of graphene at half-filling is given by:

H = ∑
ζ

vF

!

BZ

dq
ABZ

c†
ζ(q)(−ζqxσx + qyσy)cζ(q) (46)

which is the sum of two Dirac Hamiltonians. At low energy graphene has effectively two indepen-
dent Dirac fermions.

We can split the Hamiltonian into two integrals over a half of the BZ, each containing one Dirac
point. Then, linearizing the Hamiltonian near Kζ in each integral does not change the low energy
physics. It remains to extend the integral over the full reciprocal space.

Besides translation invariance, the tight-binding model of graphene has many symmetries.

14. Chirality symmetry is a unitary operator Γ such that

ΓciΓ† =

)
ci if i ∈ A
−ci if i ∈ B (47)

Check that Γ anti-commute with H. It implies that the energy spectrum of H is symmetric about
zero (show it). What is Γc†

A(q)Γ
† ? Γc†

B(q)Γ
† ? Check that Γd†

±(q)Γ† = d†
∓(q).

It is straightforward to check that ΓHΓ† = −H. This implies that if H|ψ〉 = E|ψ〉, then HΓ|ψ〉 =
−EΓ|ψ〉 : if |ψ〉 is an eigenstate with energy E, then Γ|ψ〉 is an eigenstate with energy −E (note that
Γ2 = 1, so Γ|ψ〉 cannot vanish). From

c†
A(q) = ∑

r∈A
eiq·rc†(r) c†

B(q) = ∑
r∈B

eiq·(r−d3)c†(r) = ∑
r∈A

eiq·rc†(r + d3) (48)

we have
Γc†

A(q)Γ
† = c†

A(q), Γc†
B(q)Γ

† = −c†
B(q) (49)

and it follows that Γd†
±(q)Γ† = d†

∓(q).

15. Time-reversal symmetry is an anti-linear, anti-unitary operator θ defined by

θciθ
† = ci, θc†

i θ† = c†
i . (50)

Show that graphene is invariant under time-reversal symmetry (i.e. [θ,H] = 0). What is θc†
A(q)θ†

? θc†
B(q)θ

† ?
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Since the hopping amplitudes are real, the Hamiltonian is invariant under θ. From

c†
A(q) = ∑

r∈A
eiq·rc†(r) c†

B(q) = ∑
r∈B

eiq·(r−d3)c†(r) = ∑
r∈A

eiq·rc†(r + d3) (51)

we have
θc†

A(q)θ
† = ∑

r∈A
e−iq·rθc†(r)θ† = c†

A(−q) (52)

and likewise θc†
B(q)θ† = c†

B(−q). As expected time-reversal changes the sign of the momentum.

16. Inversion symmetry is a a unitary operator I such that Icr I† = cd3−r. Check that graphene is
invariant under inversion. What is Ic†

A(q)I† ? Ic†
B(q)I†?

Since inversion leaves the lattice invariant, the Hamiltonian is invariant under I. We have

Ic†
A(q)I† = ∑

r∈A
eiq·r Ic†(r)I† = ∑

r∈A
eiq·rc†(d3 − r) = c†

B(−q). (53)

Likewise Ic†
B(q)I† = c†

A(−q). Inversion swaps the two sublattices A and B, and changes the sign
of the momentum.

17. Show that under time-reversal we have h(q) → h(−q)∗ while under inversion we have h(q) →
σxh(−q)σx. Check this way that graphene is indeed time-reversal and inversion symmetric.

Under time-reversal we have c(q) → c(−q), so

θHθ† =
!

BZ

dq
ABZ

c†(−q)h(q)∗c(−q) =
!

BZ

dq
ABZ

c†(q)h(−q)∗c(q) (54)

while under inversion c(|q) → σxc(−q), so

IHI† =
!

BZ

dq
ABZ

c†(−q)σxh(q)σxc(−q) =
!

BZ

dq
ABZ

c†(q)σxh(−q)σxc(q). (55)

Reminder of Pauli matrices:

σx =

'
0 1
1 0

(
σy =

'
0 −i
i 0

(
σz =

'
1 0
0 −1

(
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