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The Hubbard model describes spin 1/2 fermions hopping on a lattice according to the following
tight- binding Hamiltonian:

H = −t ∑
σ

∑
<i,j>

(c†
iσcjσ + c†

jσciσ) + U ∑
i
(n̂i − 1)2 − µ ∑

i
(n̂i − 1) (1)

where U > 0 is the repulsive interaction, t the hopping and µ the chemical potential. The sum < i, j >
stands for a sum over i, j nearest neighbor sites on some lattice (in two dimensions this could be a square
lattice for instance). As usual for fermions we have:

{ciσ, c†
jσ′} = δi,jδσσ′ . (2)

1 Particle conservation and U(1) symmetry

1. Let N̂ = ∑i n̂i be the total number of particles. Show without any calculation that [N̂,H] = 0 (as a
homework exercice, this can be checked by working through the algebra).

All the terms in the Hamiltonian conserve the number of particles (in each term, there are as many
destruction as creation operators), so H commutes with N̂. Physically this simply means that the
number of particles (charges for electrons) is conserved.

2. Thus N̂ is a conserved quantity. Give the local conservation equation. What is the expression for
the corresponding current ?

Since N̂ is a conserved quantity, we can write a local conservation equation (in the continuum it
would be of the form ∂tρ +∇ · j = 0, with j = h̄

2im (ψ∗∇ψ − ψ∇ψ∗) . Here, the local density at site i
is n̂i and we define a current operator Ĵij through the link i → j (a lattice version of ∇ · j), such that
the conservation equation is:

∂tn̂i(t) + ∑
<i,j>

Ĵij(t) = 0. (3)

Now, we will determine what is Ĵij. In the Heisenberg picture we have:

∂tn̂i(t) = i[H, n̂i(t)] = −it ∑
σ

∑
<i,j>

[c†
iσcjσ + c†

jσciσ, c†
iσciσ] (4)

from which we deduce
Ĵij = it ∑

σ

(−c†
iσcjσ + c†

jσciσ). (5)

Note that n̂i evolves with time (it does not commute with H): the number of particles on site i
fluctuates.

3. What would be an exemple of a (physical) tight-binding Hamiltonian without particle conservation
?

In superconductivity electrons can form pairs called Cooperons. The nombre of unpaired electrons
is not conserved. We have terms like ci+cj−∆k is the Hamiltonian.

4. Check that the Hamiltonian is invariant under

cjσ → e−iθcjσ c†
jσ → eiθc†

jσ. (6)

Such a symmetry is called a global U(1) symmetry. Why is it called a U(1) symmetry ? And why
global ?
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By inspection the Hamiltonian is clearly invariant: each term creates as many particles as it annihi-
lates. Such a symmetry is called U(1) (or sometimes S1) symmetry because the group acting here
is the group of complex numbers of modulus one (i.e. phases). More generally U(n) is the group
of n × n unitary matrices (complex matrices such that U†U = id).

This transformation is allowed since the new creation and annihilation operators have the correct
anticommutation relations (we will see in the next question that we are actually dealing with a
unitary transformation).

This transformation is called global by opposition to local because θ is not depending of the posi-
tion i.

5. Let U be the unitary operator U = eiθN̂ . What are UcjσU† and Uc†
jσU† ? Show the equivalence

between the global U(1) symmetry of question 4. and the particle conservation of question 2.

We check by testing on elementary states that

UcjσU† = e−iθcjσ Uc†
jσU† = eiθcjσ (7)

Global U(1) symmetry means [eiθN̂ ,H] = 0 which is clearly equivalent to N̂,H] = 0. A conserved
quantity corresponds to a Hamiltonian symmetry (Noether theorem) (ex: time translational invari-
ance and energy conservation).

2 SU(2) symmetry

6. What are the (global) SU(2) spin rotation generators in second quantized form ?

rom the Pauli matrice, we can recover the expression of the spin operators:

σx =

!
0 1
1 0

"
σy =

!
0 −i
i 0

"
σz =

!
1 0
0 −1

"
(8)

Ŝx = ∑
i
(c†

i+ci− + c†
i−ci+) Ŝy = i ∑

i
(c†

i+ci− − c†
i−ci+) Ŝz = i ∑

i
(n̂i+ − ni−) (9)

The operators Ŝx and Ŝy can be replaced by

Ŝ+ = ∑
i

c†
i+ci− Ŝ+ = ∑

i
c†

i−ci+. (10)

We recall the commutation relations [Ŝα, Ŝβ] = iεαβγŜγ, from which we can deduce: [Ŝ+, Ŝ−] = 2Ŝz

and [Ŝz, Ŝ±] = ±Ŝ±. The rotation of the total spin from and angle φ around a vector n is given by
the operator e−iφn·Ŝ.

7. Is the Hubbard model SU(2) symmetric ?

Yes, it is. Clearly [Ŝz,H] = 0. The only non-trivial part in showing that [Ŝ+,H] = 0 is the kinetic
term (indeed [Ŝ+, n̂i] = 0). Using [AB, C] = A{B, C}− {A, C}B, one can first derive

[Ŝ+, c†
iσ] = δσ−c†

i+ [Ŝ+, ciσ] = −δσ−ci+ (11)

From this we get [Ŝ+, c†
iσcjσ + c†

jσciσ] = 0, and we are done.

Note that the U(1) and SU(2) symmetries can be combined into a U(2) symmetry.

3 Particle-hole conjugation

8. For spinless particles, particle-hole conjugation can be defined as a linear, unitary operator Γ such
that

Γc†
i Γ† = ci (12)
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If we ignore the SU(2) symmetry of the Hubbard model, we can define particle-hole conjugation
as

Γc†
iσΓ† = ciσ (13)

Is the µ = 0 Hubbard model invariant under Γ ?

Let’s compute ΓHΓ†. Since
Γn̂iσΓ† = 1 − n̂iσ (14)

the interaction term U ∑i(n̂i − 1)2 is indeed invariant.

Γ(n̂iσ − 1)2Γ† = (n̂iσ − 1)2 (15)

The chemical potential term −µ ∑i(n̂i − 1) changes sign. That has to be expected : if µ is the energy
cost of removing an electron, then −µ is energy cost of removing a hole (i.e adding an electron). So
far so good.

But the kinetic term is not invariant :

Γ(c†
iσcjσ + c†

jσciσ)Γ† = −(c†
iσcjσ + c†

jσciσ) (16)

To sum things up, the parameters (t, U, µ) of the Hubbard model become (−t, U,−µ) under the
conjugation with Γ. Therefore (on a generic lattice) the Hubbard model is not invariant under
particle-hole conjugation (even at µ = 0). But we will see in the following questions that on a
bipartite lattice, we do have particle-hole symmetry.

9. We focus on the Hubbard model on a bipartite lattice, i.e. a lattice which can be partitioned into
two sublattices A and B, where are all the nearest neighbors of A are members of B. Show that the
sign of t is unphysical (i.e. one can find a unitary transformation that changes the sign of t).

The following local U(1) transformation

ciσ → ciσ on A (17)
ciσ → −ciσ on B (18)

changes the sign of t. This can be achieved with the following unitary transformation

U = ∏
i∈B

(−1)n̂i (19)

Then
U(c†

iσcjσ + c†
jσciσ)U† = −(c†

iσcjσ + c†
jσciσ) (20)

using that in {i, j} exactly one index is on B. This is why on a bipartite lattice we can change the
sign of t by acting with U.

10. It follows from the previous two questions that the Hubbard model (at µ = 0) is in fact particle-
hole symmetric on a bipartite lattice. To make this more explicit we consider a slightly modified
version of the particle-hole conjugation defined by:

ΓciσΓ† = c†
iσ on A (21)

ΓciσΓ† = −c†
iσ on B (22)

Check that at µ = 0 the Hubbard model is indeed invariant under this new Γ. What are the
consequences on the spectrum and the eigenstates of H ?

We compute

ΓHΓ† = −t ∑
σ

∑
<i,j>

Γ(c†
iσcjσ + c†

jσciσ)Γ† + U ∑
i

Γ(n̂i − 1)2Γ† − µ ∑
i

Γ(n̂i − 1)Γ† (23)

= t ∑
σ

∑
<i,j>

(ciσc†
jσ + cjσc†

iσ) + U ∑
i
(n̂i − 1)2 + µ ∑

i
(n̂i − 1) (24)

= H+ 2µ ∑
i

Γ(n̂i − 1) (25)

We find that under Γ, the chemical potential changes sign. In particular at µ = 0 (half-filling), we
have particle-hole symmetry. As the total number of particle N̂ commute with the Hamiltonian,
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we can solve the problem in fixed number of particles subspaces. Thus, for a lattice of N sites, the
subspaces with n particles have the same eigenenergies as the one with 2N − n particles and their
eigenstates are linked by the particle-hole transformation.

11. For spin 1/2 particles the particle-hole conjugation we have defined is not very satisfactory since
it does not conserve the spin (it is straightforward to check that Γ changes Ŝ → −Ŝ). It is more
natural to define particle-hole conjugation as

Γci+Γ† = c†
i− Γci−Γ† = −c†

i+ on A (26)

Γci+Γ† = −c†
i− Γci−Γ† = c†

i+ on B (27)

To understand why this definition is more natural, compute ΓŜiΓ†.

We now have
Γn̂iσΓ† = 1 − n̂iσ̄ (28)

Again,
Γn̂iΓ† = 2 − n̂i (29)

so that the Hamiltonian remains invariant and

ΓŜzΓ† = Ŝz. (30)

Likewise,
ΓŜ+Γ† = Γc†

i+ci−Γ† = ci−c†
i+ = Ŝz ΓŜ−Γ† = Ŝ− (31)

The choice ensures the conservation of Ŝ. This modified version of the particle-hole conjugation
commutes with the SU(2) symmetry. For instance the total spin along the z direction is now pre-
served under particle-hole conjugation.

4 Weak coupling and strong coupling regimes

12. Some insights can be gained into the Hubbard model by considering the t = 0 limit, in which the
different sites decouple. Since the system is now a collection of independent sites, one just needs
to solve a single site. What are the eigenstates and energies of a single site ? What is the partition
function at inverse temperature β ? What is the density ρ = 〈n̂i〉 ? Plot ρ versus µ for various
values of β. What happens at zero temperature ? How is the particle-hole symmetry manifest ?

For a single site we have the following eigenstates:

• |0〉 with energy U + µ

• |+〉 and |−〉 with energy 0

• |±〉 with energy U − µ

The partition function is
Z = Tr[e−βH] = 2

#
1 + e−βUch(βµ)

$
(32)

and the density is

ρ =
1
Z

Tr[n̂e−βH] =
1
β

∂µln(Z) + 1 =
2e−β(U−µ) + 2

2 + e−β(U−µ) + e−β(U+µ)
. (33)

At zero temperature the mean occupation is discontinuous :

ρ =

%
&

'

0 for µ < −U
1 for − U < µ < U
0 for U < µ

(34)

13. Solve the non-interacting case (U = 0) on a one dimensional lattice of N sites with periodic bound-
ary conditions. What is the dispersion relation ? Is the particle-hole symmetry manifest ?
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We use the translation invariance by going to the Fourier space. We define

d†
kσ =

1√
N

∑
j

c†
jσeikj (35)

for k = 2π
N m with m = 0, . . . , N − 1. They fulfil the usual anti-cummutation relation. The usual

resolution gives
H = ∑

k,σ
(εk − µ)n̂k,σ (36)

where εk = −2t cos(k). The particle-hole symmetry is there (assuming that µ = 0 and that N
is even!), but is not particularly easy to see. For instance one can check that the empty and full
occupied system have the same energy. Using the two sublattices, Γ transforms Γd†

k,σΓ† = d†
π−k,σ.

14. If we want to exactly solve the interacting problem for two sites 1 and 2. What symmetries can one
exploit (i.e. what are the good quantum numbers) ?

The symmetries that can be used are:

• the total particle number N̂

• the total spin Ŝ,

• the exchange symmetry between the two sites P̂

• the particule hole symmetry Γ.

But to be useful, these symmetries must be limited to a set of commuting symmetries. For example,
Γ et N̂ do not commute, nor the different components of the total spin operator Ŝ each with the
other: they are not compatible and cannot be simultaneously diagonalized. Γ, Ŝx and Ŝy are thus
eliminated. Then, we can add the squared spin operator Ŝ2, that commutes with each of the spin
components and whose eigenvalues are S(S + 1) with S the total spin of the state.

We denote the corresponding quantum numbers by (N, Sz, S, P). The Hubbard Hamiltonian is
block diagonal with respect to these quantum numbers.

15. (Homework) Determine the spectrum and the eigenstates of the 2-site Hubbard model.

Contact me to discuss the solution.

5 Strong-coupling regime at half-filling : effective Hamiltonian

We now focus on the Hubbard model at half-filling (we work with a fixed number of particles N, N
being the number of sites, µ = 0). In the limit U → +∞, this model can be (moderately) simplified,
notably into the Heisenberg Hamiltonian :

HH = J ∑
<i,j>

Si · Sj. (37)

This effective Hamiltonian can be obtained using perturbation theory at second order around the
ground state as we shall see.

16. Find the ground state(s) of the Hubbard model for t = 0. What is the ground-state degeneracy ?

In the ground state, there is exactly one particle per site. It leads to a degeneracy of 2N with N the
number of sites. We have for each site the possibility to place a + or - spin particle.

17. We now consider the regime U ≫ t at half-filling. We want to compute the effective Hamiltonian
of the Hubbard model (in the subspace of the previous question). Why do we need to go to second
order perturbation theory ? Show that the effective Hamiltonian is the Heisenberg model and
specify the effective coupling J.
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We use a perturbation theory with

H0 = U ∑
i
(n̂i − 1)2 V = −t ∑

σ
∑

<i,j>
(c†

iσcjσ + c†
jσciσ) (38)

The ground state of H0 has been determined in the previous question and have energy E0 = 0. The
excited states are all the other ones, namely those with a least an empty site or a doubly occupied
one. When acting with V on a ground state, we get terms like c†

iσcjσ that takes an electron from
site j and move it to site i. Starting from a ground state, we end up with a (linear combination of)
state with n̂i = 2 and n̂j = 0, i.e. a state |m〉 with energy (under H0) Em = U. Therefore, the first
order perturbation theory vanishes, and we need to go to second order where two electrons are
exchanged. At second order we get

〈σ′
1 . . . σ′

N |Heff|σ1 . . . σN〉 = −∑
|m〉

〈σ′
1 . . . σ′

N |V|m〉〈m|V|σ1 . . . σN〉
Em

(39)

where |m〉 are excitations around the eigenstate. The V bring sums over < i, j > and < i′, j′ >. The
only nonvanishing terms are for i = i′ and j = j′ (or the symmetrical) and |m〉 = c†

iσcjσ|σ1 . . . σN〉 or
|m〉 = c†

jσciσ|σ1 . . . σN〉. Both have the energy Em = 2U. Therefore,

〈σ′
1 . . . σ′

N |Heff|σ1 . . . σN〉 = − t2

2U ∑
<i,j>,σσ′

〈σ′
1 . . . σ′

N |c†
jσ′ciσ′c†

jσciσ + c†
iσ′cjσ′c†

iσcjσ|σ1 . . . σN〉 (40)

Therefore, the effective Hamiltonian is

Heff = − t2

2U ∑
<i,j>,σσ′

(c†
jσ′ciσ′c†

jσciσ + c†
iσ′cjσ′c†

iσcjσ) = − t2

2U ∑
<i,j>,σσ′

(−2c†
iσciσ′c†

jσ′cjσ + δσσ′(n̂iσ + n̂jσ))

(41)
Using that n̂i = n̂j = 1 we find

Heff =
t2

U ∑
<i,j>,σσ′

!
c†

iσciσ′c†
jσ′cjσ −

1
4

"
(42)

We can separate the sum over σ, σ′ into terms where σ = σ′ and terms where σ = −σ′ to recognise

∑
σσ′

c†
iσciσ′c†

jσ′cjσ = ∑
σ

n̂iσn̂jσ + Ŝ+
i Ŝ−

i + Ŝ−
i Ŝ+

i = Ŝi · Ŝj. (43)

Up to a constant to recover the Heisenberg Hamiltonian with J = 2t2/U. Since U > 0, we expect
ferromagnetic order.

Reminder of perturbation theory: For H = H0 + V we perform perturbation theory on V to
second order. We denote H0 the groundstate of H0 of energy E0. The effecive Hamiltonian can be
evaluated on H0 by

〈φ′|Heff|φ〉 = E0〈φ′|φ〉+ 〈φ′|V|φ〉+ ∑
Em>E0

〈φ′|V|m〉〈m|V|φ〉
E0 − Em

. (44)
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