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1 Derivation of the spin-orbit interaction from Dirac’s equation

You might have seen or will see in an advanced quantum mechanics or field theory class, that the proper
description of a spin-1/2 particle is given by Dirac’s equation, which includes also the description of the
antiparticle (in Dirac’s equation the particle and antiparticle sectors couple). In the large rest-mass en-
ergy limit (appropriate for condensed matter, it is the non-relativistic limit), we can effectively decouple
the two sectors, provided we include some effects which remain in the pure particle sector. One of them
is spin-orbit coupling. The idea is to expand Dirac’s equation with Coulomb interactions in the small
W = E − mc2 ≪ mc2 limit (mc2 is the rest energy, c is the speed of light), which we will do here.

For a particle of charge q, mass m, moving in potential (φ, A), the stationary form of the Dirac Hamil-
tonian given by Ĥψ = Eψ,

Ĥ =


(mc2 + qφ)id2 cσ · (p̂ − qA)
cσ · (p̂ − qA) (−mc2 + qφ)id2


. (1)

Note that this is a 4 × 4 matrix.

1. Consider the bispinor (essentially a four-component vector) ψT = (ψa, ψb). Write the two (2 × 2
coupled equations for ψa, ψb).

2. Using the second row equation, express ψb in terms of ψa and trade E for the shift to the rest-mass
energy W = E−mc2 (recall E is the eigenenergy). In the non-relativistic limit, W, qφ ≪ mc2, obtain
ψb as a function of ψa at leading order.

3. Define V = qφ and substitute into the first equation, to obtain the “Pauli equation” ĤNRψa = Wψa
(“NR” stands for “nonrelativistic”). Expand the square using Pauli matrix identities to find a more
familiar expression.

4. Interpret each term. Identify the spin magnetic moment µS.

5. Now we find the leading spin-orbit coupling term. To do so, take A = 0 for simplicity, and expand
ψb in terms of ψa up to the next order in W, qφ ≪ mc2.

6. Now you can find the effective Hamiltonian at that order and identify the spin-orbit coupling term
Hs.o..

7. Assume the potential is approximately radial (e.g., near the atoms), and rewrite Hs.o. in that case.

2 Aufbau principle and Hund’s rules

You reviewed in the lecture what the solutions to the hydrogen atom were. Central to the derivation
was the fact that there was a unique electron, and hence no electron-electron interactions. In most
atoms/ions, this is not the case, and an exact solution is not accessible.

In the simplest non-trivial approximation (the Hartree approximation), we assume that a given elec-
tron moves in a potential Veff(r) resulting from the nucleus and from the averaged charge density due to
the other electrons. Due to the isotropy of space, Veff(r) has spherical symmetry, and for a given electron,
we solve the single-particle Schrödinger equation. The resulting eigenfunctions take the same form as
those of the hydrogen atom

ψnlm(r) = Rnl(r)Ylm(θ, φ), (2)

as one finds from a separation ansatz, labeled by quantum numbers n ∈ {1, 2, 3, · · · }, l ∈ {0, 1, 2, · · · , n−
1}, and m ∈ {−l,−l + 1, ..., l}. The angular part is identical for any spherically symmetric potential and
is given by the spherical harmonics Ylm(θ, φ). The associated bound state energy eigenvalues for the
hydrogen atoms were EH

nl = −e2/(2naB), where aB = h̄2/(me2) = 0.529 rA is the Bohr radius, and
depended only on the principal quantum number n, so that there were 2 ∑n−1

l=0 (2l + 1) = 2n2 (accounting
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(a) (b) (c)

Figure 1: Figures from Chem Libre Text. (a) Orbital energy level diagram for a typical multielectron atom.
(b) Diagonal rule corresponding to the energies in Fig. (a). Predicting the order in which orbitals are filled in
multielectron atoms. If you write the subshells for each value of the principal quantum number on successive
lines, the observed order in which they are filled is indicated by a series of diagonal lines running from the
upper right to the lower left. (c) The periodic table, showing how the elements are grouped according to the
kind of subshell (s, p, d, f) being filled with electrons in the valence shell of each element.
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Figure 2: Sketch of Hund’s rules in the case of p electrons.
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also for ms = ±1/2) degenerate states for every n. Accounting for electron-electron interactions using
the Hartree method as described above introduces the essential physics of screening, a result of which
is that states of different l for a given n are no longer degenerate, and Enl depends on n, l. Thus Enl is
2(2l + 1)-fold degenerate for every n, l (including a factor of 2 from the spin ms = ±1/2), each state in
this degenerate manifold being labeled by m and ms. This group of orbitals is called a shell, and one can
argue that smaller l means lower energy since those states are localized closer to the nucleus, where the
potential is less screened.

Based on the Hartree-Fock energy levels, the order in which the electron shells are filled throughout
the periodic table is roughly given what is known as the Aufbau principle from the German Aufbau =
“building up”. The order in which the orbitals are filled roughly follows the diagonal rule, which says
that orbitals with lower values of n + l are filled before those with higher values, and that in the case of
equal n + l values, the orbital with the lower n is filled first.1

However, this electronic configuration does not uniquely specify a ground state. If a shell contains
nnl electrons there are Cnnl

2(2l+1) possible ways to distribute these electrons, which gives the degeneracy of

the many-particle state. [Note that for a filled shell we get C2(2l+1)
2(2l+1) = 1, i.e., no degeneracy.] Consider, for

example, carbon, whose configuration is 1s22s22p2. The filled 1s and 2s shells are inert. However, there
are C2

6 = 15 possible ways to put two electrons in the 2p shell.
The Cnnl

2(2l+1)-fold degenerate state splits into multiplets with fixed L and S and degeneracies (2L +

1)(2S + 1) (L = ∑i li, S = ∑i si) without spin-orbit coupling. It is standard to abbreviate each such
multiplet with the label 2S+1LJ , called a term, where L = S, P, D, F, G, H, etc, and J = L + S is the total
angular momentum. Typical energy splittings between multiplets are of the order of 10 eV.

The addition of angular momentum in quantum mechanics is technical and we won’t discuss here
because our situation will soon be simpler. But for exemple, for carbon, the largest L value we can get is
L = 2, which requires S = 0 and hence J = L = 2. This 5-fold degenerate multiplet is then abbreviated
1D2. But we can also add together two l = 1 states to get total angular momentum L = 1 as well. The
corresponding spatial wavefunction is antisymmetric, hence S = 1 in order to achieve a symmetric spin
wavefunction. Since |L − S| ≤ J ≤ |L + S|, we have J = 0, J = 1, or J = 2 corresponding to multiplets
3P0, 3P1, and 3P2, with degeneracy 1, 3, and 5, respectively. The final state has J = L = S = 0: 1S0.
The Hilbert space is then spanned by two J = 0 singlets, one J = 1 triplet, and two J = 2 quintuplets:
0 ⊕ 0 ⊕ 1 ⊕ 2 ⊕ 2. That makes 15 states. Which of these is the ground state?

The ground-state multiplet is found from the empirical Hund’s rules.

(i) The first Hund rule is: The LS multiplet with the largest S has the lowest energy. One prefers large
S because this makes the spin part of the wavefunction maximally symmetric, which means that the
spatial part is maximally antisymmetric (Pauli principle). Electrons, which repel each other (Coulomb
repulsion), prefer to exist in a spatially antisymmetric state. We can carry out a small calculation to
“show” this might be correct.

1. recall the form of the Coulomb interaction in second quantization

In a different (discrete) basis (not defined here, but also assumed localized), then the Coulomb
interaction contains terms with the slightly modified form:

H′ = ∑
mnrs

Umnrsc†
mσc†

nσ′crσ′csσ, (3)

with

Umnrs =
1
2


dx


dx′ψ∗

m(x)ψ∗
n(x′)

e2

|x − x′|ψr(x′)ψs(x), (4)

with cnσ =


dxψn(x)c†
σ(x) and c†

nσ|Ω〉 = |ψn〉 =


dx|x〉〈x|ψn〉, with |x〉 = c†
σ(x)|Ω〉.

2. What do the “direct terms,” i.e. those with r = n, s = m, Umnnm ≡ Vmn look like?

3. How about those with r = m, s = n, Umnmn ≡ JF
mn?

Note that this is a ferromagnetic coupling. It is thought not to be very important from atom to atom,
but important within an atom.

4. How would you write a phenomenological Hamiltonian which prefers maximal S?

1There are hiccups here and there. For example, in filling the 3d shell of the transition metal series (row four of the periodic
table) , 21Sc, 22Ti, and 23V, are configured as [Ar] 4s2 3d1, [Ar] 4s2 3d2, and [Ar] 4s2 3d4, respectively, but chromium’s (Cr)
(dominant) configuration is [Ar] 4s1 3d5. Similarly, copper (Cu) is [Ar] 4s1 3d10 rather than the expected [Ar] 4s2 3d9. For
palladium (Pd), the diagonal rule predicts an electronic configuration [Kr] 5s2 4d8 whereas experiments say it is [Kr] 5s0 4d10.
This shell configuration stuff should not be taken too seriously, because the atomic ground states are really linear combinations
of different shell configurations, so we should really think of these various configurations as being the dominant ones among
a more general linear combination of states (in other words, in reality, the ground state is not a single Slater determinant and
involves linear combinations of different configurations). For example, the largest weights are for Cr and Cu configurations
with only one 4s electron. Zinc terminates the 3d series, after which we get orderly filling of the 4p orbitals. Row five pretty
much repeats row four, with the filling of the 5s, 4d, and 5p shells. In row six, the lanthanide (4f) series interpolates between
the 6s and 5d shells, as the 5f actinide series interpolates in row seven between 7s and 6d.

3



Quantum Matter - TD no5 Baptiste Coquinot, Lucile Savary

(ii) The second Hund rule is: If the largest value of S is associated with several multiplets, the
multiplet with the largest L has the lowest energy. There really is not a specific calculation to
understand the second Hund’s rule, but the rationale is that large L expands the electron cloud
somewhat, which also keeps the electrons away from each other (classical picture: the electrons
have aligned angular momenta, i.e., rotate in the same direction, and are thus further apart).

(iii) The third Hund’s rule refers to spin-orbit coupling and says: If an incomplete shell is not
more than half-filled, then the lowest energy state has J = |L − S|. If the shell is more than half-
filled, then J = L+ S. This rule can be “justified” using the expression for the spin-orbit coupling
term Hs.o. as you derived from the expansion of the Dirac equation. We will not do it here, but you
can find it for example in Lectures on quantum mechanics by G. Baym, Chapter 20. When this applies
(lighter atoms), it is called the “l-s scheme” (or Russel-Saunders scheme). When atoms are heavy,
spin-orbit coupling is strong and one should use the “j-j scheme” whereby one first addresses the
spin-orbit coupling terms.

Let us now apply these rules. Here is an example:

P: The electronic configuration for elemental phosphorus is 3s2 3p3. The unfilled 3d shell has three
electrons. First maximize S by polarizing all spins parallel (up, say), yielding S = 3/2 . Next
maximize L consistent with Pauli exclusion, which says L = −1+ 0+ 1 = 0. Finally, since the shell
is exactly half-filled, and not more, J = |L − S| = 2 , and the ground state term is 4S2.

5. Find the ground state of Mn4+: 4s0 3d3.

6. Find the ground state of Fe2+: 4s0 3d6.

7. Find the ground state of Nd3+: 6s0 4 f 3.

A final note: Regarding magnetism, note that completely filled shells (made up of all orbitals with the
same quantum numbers (n, l) have 〈li〉 = 0 and and 〈∑i si〉 = 0, i.e., vanishing total angular momentum,
since for each electron there is another one with opposite 〈li〉, 〈si〉. Clearly, the total magnetic moment
of filled shells also vanishes. Thus magnetic ions require incompletely filled shells.
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