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Consider the antiferromagnetic Heisenberg model for a cubic lattice of spin s, considering only
nearest-neighbor exchange. De note N the number of sites in the lattice, d the dimension and put the
lattice size a = 1.

1. Write down the Hamiltonian.

H = J ∑
〈i,j〉

Si · Sj, J > 0 (1)

2. What is the ground state (albeit not exact) of this model?

The cubic lattice is a bipartite lattice. The ground state has spin Sz = −s on one “sublattice”, and
spin Sz = s on the other, with the z direction in spin space chosen arbitrarily.

3. What is the ground state energy of this model?

We just need to plug in the above answer into the Hamiltonian: E0 = −Js2 × d × N.

Using Holstein-Primakoff bosons we want to calculate the spin wave spectrum above this ground
state.

4. Rewrite the spin vectors using Holstein-Primakoff bosons. Recall that we have two sublattices.

i ∈ A :

󰀻
󰁁󰀿

󰁁󰀽

Sz
i = −s + a†

i ai

S+
i ≈

√
2sa†

i

S−
i ≈

√
2sai

, i ∈ B :

󰀻
󰁁󰀿

󰁁󰀽

Sz
i = s − a†

i ai

S+
i ≈

√
2sai

S−
i ≈

√
2sa†

i

. (2)

where S+ = Sx + iSy and S− = Sx − iSy.

5. Go to momentum space (we still have two sublattices) and rewrite the Hamiltonian neglecting
4-order terms.

aA,i =

󰁵
2
N ∑

k
aAkeik·Ri , aB,j =

󰁵
2
N ∑

k
aBkeik·Rj (3)

so, e.g.

∑
i∈A,<i,j>

a†
Aia

†
Bj =

2
N ∑

k,k′
a†

Aka†
Bk′ ∑

i∈A
e−ik·Ri ∑

ul=±x̂µ

e−ik′·(Ri+ul) (4)

= ∑
k

󰀣

∑
µ=x,y,z

2 cos kµ

󰀤
a†

Aka†
B−k (5)

Then one gets

H = −J ∑
〈i,j〉

s2 + Js ∑
k

󰁫
2d

󰀓
a†

AkaAk + a†
BkaBk

󰀔
+ 2λk

󰀓
a†

Aka†
B−k + aAkaB−k

󰀔󰁬
, (6)

with
λk = ∑

µ

cos kµ (7)

(we took the lattice spacing a = 1).
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Notice that what you obtained does not take the form of a simple harmonic oscillator Hamiltonian,
but that it is quadratic and that fields with different k and −k are decoupled. In order to transform
boson bilinears of the form a†a† and aa into “normal” terms such as a†a (or aa†), it is necessary to
perform a Bogoliubov transformation, i.e. to define

󰀫
aAk = (cosh ηk)b1k + (sinh ηk)b†

2−k

a†
B−k = (cosh ηk)b†

2−k + (sinh ηk)b1k
(8)

We will choose ηk to simplify H

6. check that b and b† satisfy canonical bosonic commutation relations, [blk, b†
lk] = 1 (l = 1, 2) etc.

Just use the definition and use that a fulfil these relations as well as cosh2 − sinh2 = 1.

7. Plug these expression into the Hamiltonian and find ηk such that all the “anormal” terms vanish.
You can ignore constants.

We find
H = const + Js ∑

k
[2d cosh(2ηk) + 2λk sinh(2ηk)](b†

1kb1k + b†
2kb2k) +Hout (9)

where
Hout = Js ∑

k
[2d sinh(2ηk) + 2λk cosh(2ηk)](b†

1kb2−k + b†
2−kb1k) (10)

should vanish. We then put:

sinh 2ηk =
−λk󰁴
d2 − λ2

k

, cosh 2ηk =
d󰁴

d2 − λ2
k

(11)

8. Now find the dispersion relation at small k and plot it.

H = const + 2Js ∑
k

󰁴
d2 − λ2

k(b
†
1kb1k + b†

2kb2k) (12)

= const + ∑
k

󰂃k(b†
1kb1k + b†

2kb2k), (13)

with

󰂃k = 2Js

󰁹󰁸󰁸󰁷d2 −
󰀣

∑
µ

cos kµ

󰀤2

≈ 2Js

󰁶

d2 −
󰀕

d − k2

2

󰀖2

= 2
√

dJs|k| (14)

9. What are the main differences with the ferromagnetic spectrum?

The dispersion is not quadratic but in |k|.

10. Compute 〈Sz
i∈B〉 − s. This is the correction to the staggered magnetization (due to quantum fluctu-

ations at T = 0).

〈Sz
i∈B〉 = s − 〈ni〉 = s − 〈a†

i∈Bai∈B〉 = s − 2
N ∑

k
〈a†

BkaBk〉 (15)

so

〈Sz
i∈B〉 − s = − 2

N ∑
k

󰁫
cosh2 ηk〈b†

2kb2k〉+ sinh2 ηk〈b1−kb†
1−k〉

󰁬
(16)

= − 2
N ∑

k

󰀗
1
2

cosh 2ηk〈b†
1−kb1−k + b†

2kb2k〉+ sinh2 ηk

󰀘
(17)

= −2
󰁝

BZ

ddk
(2π)d

󰀵

󰀷 d󰁴
d2 − λ2

k

2
eβ󰂃k − 1

+
1
2

󰀳

󰁃 d󰁴
d2 − λ2

k

− 1

󰀴

󰁄

󰀶

󰀸 (18)
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The first term represents thermally excited magnons, while the second captures zero-point fluctu-
ations. At T → 0, we have:

〈Sz
i 〉B − s ≈ −

󰁝

BZ

ddk
(2π)d

󰀳

󰁃 d󰁴
d2 − λ2

k

− 1

󰀴

󰁄 =

󰀫
−0.197 d = 2
−0.078 d = 3

(19)
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