# ICFP M1 - Quantum Matter - TD n ${ }^{\circ} 6$ - Solutions Spinwaves in the antiferromagnetic Heisenberg model 

Baptiste Coquinot, Lucile Savary
baptiste.coquinot@ens.fr
2023-2024

Consider the antiferromagnetic Heisenberg model for a cubic lattice of spin $s$, considering only nearest-neighbor exchange. De note $N$ the number of sites in the lattice, $d$ the dimension and put the lattice size $a=1$.

1. Write down the Hamiltonian.

$$
\begin{equation*}
\mathcal{H}=J \sum_{\langle i, j\rangle} \mathbf{S}_{i} \cdot \mathbf{S}_{j}, \quad J>0 \tag{1}
\end{equation*}
$$

2. What is the ground state (albeit not exact) of this model?

The cubic lattice is a bipartite lattice. The ground state has spin $S^{z}=-s$ on one "sublattice", and spin $S^{z}=s$ on the other, with the $z$ direction in spin space chosen arbitrarily.
3. What is the ground state energy of this model?

We just need to plug in the above answer into the Hamiltonian: $E_{0}=-J s^{2} \times d \times N$.

Using Holstein-Primakoff bosons we want to calculate the spin wave spectrum above this ground state.
4. Rewrite the spin vectors using Holstein-Primakoff bosons. Recall that we have two sublattices.

$$
i \in \mathrm{~A}:\left\{\begin{array}{l}
S_{i}^{z}=-s+a_{i}^{\dagger} a_{i}  \tag{2}\\
S_{i}^{+} \approx \sqrt{2 s} a_{i}^{\dagger} \\
S_{i}^{-} \approx \sqrt{2 s} a_{i}
\end{array}, \quad i \in \mathrm{~B}: \quad\left\{\begin{array}{l}
S_{i}^{z}=s-a_{i}^{\dagger} a_{i} \\
S_{i}^{+} \approx \sqrt{2 s} a_{i} \\
S_{i}^{-} \approx \sqrt{2 s} a_{i}^{+}
\end{array}\right.\right.
$$

where $S^{+}=S^{x}+i S^{y}$ and $S^{-}=S^{x}-i S^{y}$.
5. Go to momentum space (we still have two sublattices) and rewrite the Hamiltonian neglecting 4 -order terms.

$$
\begin{equation*}
a_{\mathrm{A}, i}=\sqrt{\frac{2}{N}} \sum_{\mathbf{k}} a_{\mathrm{A} \mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}_{i}}, \quad a_{\mathrm{B}, j}=\sqrt{\frac{2}{N}} \sum_{\mathbf{k}} a_{\mathrm{B} \mathbf{k}} e^{i \mathbf{k} \cdot \mathbf{R}_{j}} \tag{3}
\end{equation*}
$$

so, e.g.

$$
\begin{align*}
\sum_{i \in \mathrm{~A},<i, j>} a_{\mathrm{A} i}^{\dagger} a_{\mathrm{B} j}^{\dagger} & =\frac{2}{N} \sum_{\mathbf{k}, \mathbf{k}^{\prime}} a_{\mathrm{A} \mathbf{k}}^{\dagger} a_{\mathrm{B} \mathbf{k}^{\prime}}^{\dagger} \sum_{i \in \mathrm{~A}} e^{-i \mathbf{k} \cdot \mathbf{R}_{i}} \sum_{\mathbf{u}_{l}= \pm \hat{\mathbf{x}}^{\mu}} e^{-i \mathbf{k}^{\prime} \cdot\left(\mathbf{R}_{i}+\mathbf{u}_{l}\right)}  \tag{4}\\
& =\sum_{\mathbf{k}}\left(\sum_{\mu=x, y, z} 2 \cos k^{\mu}\right) a_{\mathrm{A} \mathbf{k}}^{\dagger} a_{\mathrm{B}-\mathbf{k}}^{\dagger} \tag{5}
\end{align*}
$$

Then one gets

$$
\begin{equation*}
\mathcal{H}=-J \sum_{\langle i, j\rangle} s^{2}+J s \sum_{\mathbf{k}}\left[2 d\left(a_{\mathrm{A} \mathbf{k}}^{\dagger} a_{\mathrm{Ak}}+a_{\mathrm{Bk}}^{\dagger} a_{\mathrm{B} \mathbf{k}}\right)+2 \lambda_{\mathbf{k}}\left(a_{\mathrm{A} \mathbf{k}}^{\dagger} a_{\mathrm{B}-\mathbf{k}}^{\dagger}+a_{\mathrm{A} \mathbf{k}} a_{\mathrm{B}-\mathbf{k}}\right)\right], \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda_{\mathbf{k}}=\sum_{\mu} \cos k^{\mu} \tag{7}
\end{equation*}
$$

(we took the lattice spacing $\mathfrak{a}=1$ ).

Notice that what you obtained does not take the form of a simple harmonic oscillator Hamiltonian, but that it is quadratic and that fields with different $\mathbf{k}$ and $-\mathbf{k}$ are decoupled. In order to transform boson bilinears of the form $a^{\dagger} a^{\dagger}$ and $a a$ into "normal" terms such as $a^{\dagger} a$ (or $a a^{\dagger}$ ), it is necessary to perform a Bogoliubov transformation, i.e. to define

$$
\left\{\begin{array}{l}
a_{\mathrm{Ak}}=\left(\cosh \eta_{\mathbf{k}}\right) b_{1 \mathbf{k}}+\left(\sinh \eta_{\mathbf{k}}\right) b_{2-\mathbf{k}}^{+}  \tag{8}\\
a_{\mathrm{B}-\mathbf{k}}^{+}=\left(\cosh \eta_{\mathbf{k}}\right) b_{2-\mathbf{k}}^{+}+\left(\sinh \eta_{\mathbf{k}}\right) b_{1 \mathbf{k}}
\end{array}\right.
$$

We will choose $\eta_{\mathbf{k}}$ to simplify $H$
6. check that $b$ and $b^{\dagger}$ satisfy canonical bosonic commutation relations, $\left[b_{l \mathbf{k}}, b_{l \mathbf{k}}^{\dagger}\right]=1(l=1,2)$ etc.

Just use the definition and use that $a$ fulfil these relations as well as $\cosh ^{2}-\sinh ^{2}=1$.
7. Plug these expression into the Hamiltonian and find $\eta_{\mathbf{k}}$ such that all the "anormal" terms vanish. You can ignore constants.

We find

$$
\begin{equation*}
\mathcal{H}=\text { const }+J s \sum_{k}\left[2 d \cosh \left(2 \eta_{k}\right)+2 \lambda_{k} \sinh \left(2 \eta_{k}\right)\right]\left(b_{1 k}^{\dagger} b_{1 k}+b_{2 k}^{\dagger} b_{2 k}\right)+\mathcal{H}_{\text {out }} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{H}_{\text {out }}=J s \sum_{k}\left[2 d \sinh \left(2 \eta_{k}\right)+2 \lambda_{k} \cosh \left(2 \eta_{k}\right)\right]\left(b_{1 k}^{\dagger} b_{2-k}+b_{2-k}^{\dagger} b_{1 k}\right) \tag{10}
\end{equation*}
$$

should vanish. We then put:

$$
\begin{equation*}
\sinh 2 \eta_{\mathbf{k}}=\frac{-\lambda_{\mathbf{k}}}{\sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}}, \quad \cosh 2 \eta_{\mathbf{k}}=\frac{d}{\sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}} \tag{11}
\end{equation*}
$$

8. Now find the dispersion relation at small $k$ and plot it.

$$
\begin{align*}
\mathcal{H} & =\text { const }+2 J s \sum_{\mathbf{k}} \sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}\left(b_{1 \mathbf{k}}^{\dagger} b_{1 \mathbf{k}}+b_{2 \mathbf{k}}^{\dagger} b_{2 \mathbf{k}}\right)  \tag{12}\\
& =\text { const }+\sum_{\mathbf{k}} \epsilon_{\mathbf{k}}\left(b_{1 \mathbf{k}}^{\dagger} b_{1 \mathbf{k}}+b_{2 \mathbf{k}}^{\dagger} b_{2 \mathbf{k}}\right) \tag{13}
\end{align*}
$$

with

$$
\begin{equation*}
\epsilon_{\mathbf{k}}=2 J s \sqrt{d^{2}-\left(\sum_{\mu} \cos k^{\mu}\right)^{2}} \approx 2 J s \sqrt{d^{2}-\left(d-\frac{k^{2}}{2}\right)^{2}}=2 \sqrt{d} J s|\mathbf{k}| \tag{14}
\end{equation*}
$$

9. What are the main differences with the ferromagnetic spectrum?

The dispersion is not quadratic but in $|k|$.
10. Compute $\left\langle S_{i \in \mathrm{~B}}^{z}\right\rangle-s$. This is the correction to the staggered magnetization (due to quantum fluctuations at $T=0$ ).

$$
\begin{equation*}
\left\langle S_{i \in \mathrm{~B}}^{z}\right\rangle=s-\left\langle n_{i}\right\rangle=s-\left\langle a_{i \in \mathrm{~B}}^{\dagger} a_{i \in \mathrm{~B}}\right\rangle=s-\frac{2}{N} \sum_{\mathbf{k}}\left\langle a_{\mathrm{Bk}}^{\dagger} a_{\mathrm{Bk}}\right\rangle \tag{15}
\end{equation*}
$$

so

$$
\begin{align*}
\left\langle S_{i \in \mathrm{~B}}^{z}\right\rangle-s & =-\frac{2}{N} \sum_{\mathbf{k}}\left[\cosh ^{2} \eta_{\mathbf{k}}\left\langle b_{2 \mathbf{k}}^{+} b_{2 \mathbf{k}}\right\rangle+\sinh ^{2} \eta_{\mathbf{k}}\left\langle b_{1-\mathbf{k}} b_{1-\mathbf{k}}^{\dagger}\right\rangle\right]  \tag{16}\\
& =-\frac{2}{N} \sum_{\mathbf{k}}\left[\frac{1}{2} \cosh 2 \eta_{\mathbf{k}}\left\langle b_{1-\mathbf{k}}^{+} b_{1-\mathbf{k}}+b_{2 \mathbf{k}}^{+} b_{2 \mathbf{k}}\right\rangle+\sinh ^{2} \eta_{\mathbf{k}}\right]  \tag{17}\\
& =-2 \int_{\mathrm{BZ}} \frac{d^{d} k}{(2 \pi)^{d}}\left[\frac{d}{\sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}} \frac{2}{e^{\beta \epsilon_{\mathbf{k}}-1}}+\frac{1}{2}\left(\frac{d}{\sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}}-1\right)\right] \tag{18}
\end{align*}
$$

The first term represents thermally excited magnons, while the second captures zero-point fluctuations. At $T \rightarrow 0$, we have:

$$
\left\langle S_{i}^{z}\right\rangle_{\mathrm{B}}-s \approx-\int_{\mathrm{BZ}} \frac{d^{d} k}{(2 \pi)^{d}}\left(\frac{d}{\sqrt{d^{2}-\lambda_{\mathbf{k}}^{2}}}-1\right)= \begin{cases}-0.197 & d=2  \tag{19}\\ -0.078 & d=3\end{cases}
$$

