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1 Berry curvature and Hall conductivity of Haldane’s honeycomb model

In class, you introduced the low-energy Hamiltonian version of the Haldane model, namely

H = v
!
µzτxkx + τyky

"
+ m1τz + m2µzτz, (1)

where the Pauli matrices mean the following:

• τz = ±1: sublattices A/B,

• µz = ±1: valley K/K’,

• σz = ±1: spin ±1/2 (H in Eq. (1) is diagonal in spin, i.e. one should think about it as being
multiplied by σ0 = Id(σ)

2 ).

Using the fact that µz commutes with all terms in H, you found that the energy dispersions for fixed
µz = ±1 were

ε±(m1, m2) = ±
#

v2k2 + (m1 + µzm2)2. (2)

1. Derive this and find expressions for the corresponding eigenstates.

2. Show that the gap vanishes (i.e. there exists at least one k0 such that ε−(k0) = ε+(k0)) if |m1| =
|m2| and in the case µz = −sign(m1/m2).

Assume that the system is “half-filled,” i.e. that the ε− band(s) are filled, and the ε+ one(s) are
empty. Recall the expression of the Berry phase of the lower band (ε− band, also called valence
band):

Ω−(k) = ∂xAy
− − ∂yAx

−, with Aµ
−(k) = i〈u−k|∂µ|u−k〉, (3)

where ∂µ ≡ ∂
∂kµ . We will derive an expression of the Berry curvature (which applies beyond the

Haldane model) which will be easier to use than the definition Eq. (3).

3. Show that, for n = ±,
Ωn(k) = −2Im[〈∂xunk|∂yunk〉]. (4)

4. Using 〈unk|unk〉 = 1 and 〈unk|umk〉 = 0 for m ∕= n and differentiating, show that

Ωn(k) = −i ∑
m ∕=n

(〈unk|∂xumk〉〈umk|∂yunk〉 − 〈unk|∂yumk〉〈umk|∂xunk〉) (5)

5. Show that

Ωn(k) = i ∑
m ∕=n

$ 〈unk|∂x H|umk〉〈umk|∂yH|unk〉 − 〈unk|∂yH|umk〉〈umk|∂x H|unk〉
(En(k)− Em(k))2

%
. (6)

To do so, write Schrödinger’s equation for a band n

H|unk〉 = En(k)|unk〉, (7)

contract it on the left with the eigenstate for a band m

〈umk|H|unk〉 = En(k)〈umk|unk〉, (8)

and differentiate with respect to kµ.
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6. Let us now go back to the specific case of the Haldane model. Writing H = vµzτxkx + vτyky + mτz

(think m = m1 + µzm2) and noticing that

|u±k〉〈u±k| =
1
2

$
τ0 ± H

ε+k

%
, (9)

recover the result for the Berry phase of the lower band of the Haldane model given in class, i.e.

Ω−(k) = µz mv2

2(v2k2 + m2)3/2 . (10)

7. What is the sign of Ω+(k) compared to that of Ω−(k)?

8. Check that !
d2k Ω−(k) = πµzsign(m). (11)

To do so, extend the integral over the BZ to infinity and recall
! ∞

0 dx x/(x2 + b2)3/2 = 1/
√

b2.

9. Note the appearance of µz. This appears because the valley determines the sense of winding of the
Dirac point, or chirality. For a given sign of mass, opposite chirality gives opposite Berry curvature.
The integrand is strongly peaked in a region of width m/v in momentum space around the Dirac
point. So when the Fermi level lies in the gap formed by the mass, we can say, using the general
formula Cn = 1

2π

!
BZ d2kΩn(k), that each Dirac point contributes plus or minus half an integer to

the Chern number. This must be added for every distinct Dirac point, i.e. for each spin and valley.
Therefore there is a general formula for the Chern number for a set of massive Dirac points with
the Fermi level in the gap:

C = ∑
i

1
2

sign(miµ
z
i ) (12)

Here the sum is over all Dirac points, i.e. for our model of graphene it includes four such points,
for spin and valley. One might be worried about Eq. (12), because it looks like it can give a half-
integer quantum Hall effect. However, for any physical two dimensional system, there is a famous
theorem (Nielsen-Ninomiya) that there must always be an even number of Dirac points. This
guarantees an integer result for an insulator.

10. Let’s apply the formula Eq. (12) to two limit cases.

(a) Apply Eq. (12) in the limit m2 = 0.

(b) Now consider the limit m1 = 0.

Remark: Can these insulators be distinguished experimentally? Yes! The nontrivial (C ∕= 0 in
this case) insulators have edge states and a nonzero (and quantized) Hall conductivity, which the
“trivial” (C = 0 here) insulators do not have. In fact, one can show that

C = NR − NL, (13)

where NR and NL are the number of “right” and “left” movers respectively at a boundary. This is
an instance of the “bulk-boundary correspondence”;

σH =
σyx − σxy

2
= e2 ∑

n occupied

! d2k
(2π)2 Ωn(k) =

e2

2π ∑
n occupied

Cn =
e2

h
C, (14)

where we restored the factor h̄ to get physical units. This is the TKNN formula. (One can also
understand it from the bulk-boundary correspondence.) We have therefore shown that one can
have a nonzero Hall conductivity in the absence of a magnetic field.
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