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The autocorrelation function and the Wiener-Kinchin theorem. For stationary stochastic dynamics, the
autocorrelation function is defined as Cx(t, t′) = 〈x(t)x(t′)〉, where 〈·〉 denotes the ensemble average (average
over the stationary distribution).

1. What property of Cx is ensured by stationarity? Write Cx as a function of τ = t′ − t.

2. Assuming ergodicity, show that the autocorrelation function is an even function.

3. (Bonus) Show that for any integrable function g,

! T/2

−T/2
dt

! T/2

−T/2
dsg(s − t) =

! T

−T
g(τ)(T − |τ|)dτ.

4. The power spectral density of a signal x(t) is defined as

P̂x(ω) = lim
T→∞

1
T
〈|x̂T(ω)|2〉,

where x̂T(ω) =
! T/2
−T/2 x(t)eiωtdt, the Fourier transform of x(t) over the interval t ∈ [−T/2, T/2]. Show

that the power spectral density is the Fourier transform of the autocorrelation function:

P̂x(ω) = F (Cx(τ))

where F represent the Fourier transform.

5. How can we get the autocorrelation function from the power spectral density? These relations are known
as the Wiener-Kinchin theorem.

Leveraging Fourier transforms to estimate the correlation function. We now leverage the Wiener-
Kinchin theorem in example applications

6. Consider the following stochastic dynamics for the velocity of a damped particle,

mv̇ = −γv + ση,

where η is a Gaussian uncorrelated random variable 〈η(t)η(t′)〉 = δ(t − t′), γ is a damping coefficient
and σ is the magnitude of the noise. Write down the Fourier transform of the Langevin equation, and
estimate the correlation function of v through the Wiener-Kinchin theorem.

7. What is the value of σ that keeps the particle at thermal equilibrium? Compare with the results of TD9.

8. Consider now the Langevin dynamics of a particle confined in a harmonic (quadratic) potential and in
contact with a heat bath in equilibrium:

mẍ = −γẋ − kx + η(t),

Where η(t) is Gaussian white noise. What is its equation of motion in phase space? What is the correla-
tion function of the noise in equilibrium?

9. Compute the autocorrelation function of the particle’s position using the Wiener-Kinchin theorem, and
show that it obeys qualitatively different behaviors in the underdamped and overdamped regimes.
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Correction

1. Stationarity ensures that Cx(t + τ, t) only depends on the time difference τ. Thus, we may write Cx(τ).

2. For ergodic dynamics, the ensemble average equals a long time average, and so the autocorrelation
function can be written as,

Cx(τ) = lim
T→∞

1
T

! T

0
x(t)x(t + τ)dt.

A function is symmetric when f (x) = f (−x), so we need to compute Cx(−τ),

Cx(−τ) = lim
T→∞

1
T

! T

0
x(t)x(t − τ)dt

= lim
T→∞

1
T

! T−τ

−τ
x(t′ + τ)x(t′)dt′

= lim
T→∞

1
T

!! 0

−τ
x(t′)x(t′ + τ)dt′ +

! T

0
x(t′)x(t′ + τ)dt′ −

! T

T−τ
x(t′)x(t′ + τ)dt′

"

= lim
T→∞

1
T

! T

0
x(t)x(t + τ)dt = Cx(τ),

where we’ve performed a change of variables t′ = t − τ, t′ ∈ [−τ, T − τ], and then in the limit T → ∞,
only the middle integral contributes. Another way to derive this is to write down Cx(−τ) = 〈x(t)x(t −
τ)〉, make the same change of variables to 〈x(t′ + τ)x(t′)〉 and then realize that due to stationarity (time-
translation invariance) we can change this back to 〈x(t)x(t + τ) = Cx(τ)〉.

3. Performing the change of variables u = s − t, v = s + t, we get,
! T/2

−T/2
dt

! T/2

−T/2
dsg(s − t) =

! T

−T
du

! T−|u|

−T+|u|
dudvg(u)det(J) (1)

=
1
2

! T

−T
dug(u)

! T−|u|

−T+|u|
dv =

! T

−T
dug(u)(T − |u|) (2)

4. From the expression of the power spectral density we get,

P̂x(ω) = lim
T→∞

1
T
〈|x̂T(ω)|2〉

= lim
T→∞

1
T

! T/2

−T/2
ds

! T/2

−T/2
dt〈x(s)x(t)〉eiω(s−t)

= lim
T→∞

1
T

! T/2

−T/2
ds

! T/2

−T/2
dtCx(s − t)eiω(s−t)

= lim
T→∞

! T

−T
dτCx(τ)eiωτ

#
1 − |τ|

T

$

= lim
T→∞

! ∞

−∞
dτCx(τ)eiωτεT(τ)

=
! ∞

−∞
dτCx(τ)eiωτ

= F (Cx(τ)),

where we have used the previous result with g(τ) = Cx(τ)eiω(τ) and set εT(τ) =
%

1 − |τ|
T

&
1|t|≤T which

converges to 1 at each point and is dominated by 1. Taken the limit T → ∞, εT disappears thanks to the
dominated convergence theorem.

5.

P̂x(ω) = F (Cx(τ)) ⇒ Cx(τ) = F−1(P̂x(ω))

where F represent the Fourier transform and F−1 the inverse Fourier transform.

6. One can easily show that F (ẋ(t)) = −iωx̂(ω). Therefore, taking the Fourier transform of the Langevin
equation, we get,

−iωmv̂(ω) = −γv̂(ω) + ση(ω)

which is simple to solve in Fourier space, yielding,

v̂(ω) =
ση(ω)

γ − iωm
.

From this, we can directly estimate the power spectral density,

P̂v(ω) ∝ 〈v̂(ω)v̂∗(ω)〉

=
σ2〈η(ω)η∗(ω)〉

m2
'
ω − i γ

m

( '
ω + i γ

m

( .
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The power spectral density of the noise can be obtained by taking the Fourier transform of the correlation
function

P̂η(ω) =
! ∞

−∞
〈η(t)η(0)〉eiωtdt =

! ∞

−∞
δ(t − 0)eiωtdt = 1.

Thus,

P̂v(ω) =
σ2

m2
'
ω − i γ

m

( '
ω + i γ

m

( .

To get the correlation function we need to compute the inverse Fourier transform of the power spectral
density. Given the convention for the Fourier transform used in 4., the inverse Fourier transform is given
by,

F−1(x̂(ω)) =
1

2π

! ∞

−∞
dω x̂(ω)e−iωt.

The power spectral density of v is proportional to P̂v(ω) ∝ 〈v̂(ω)v̂∗(ω)〉, and so we get,

Cv(τ) = F−1

)
σ2

m2
'
ω − i γ

m

( '
ω + i γ

m

(
*

=
1

2π

! ∞

−∞
dω

σ2e−iωτ

m2
'
ω − i γ

m

( '
ω + i γ

m

( ,

which we can solve through Cauchy’s residue theorem. Since the exponent in in the negative half-plane,
we integrate over a clockwise contour with a simple pole at ω = −i γ

m . This yields,

Cv(τ) =
1

2πm2 (−2πi)
σ2e−i(−i γ

m τ)

−2i γ
m

Cv(τ) =
σ2

2γm
e−

γ
m τ

7. In order for the particle to be in thermal equilibrium, we must have Cv(0) = kBT
m , therefore

σ2 = 2γkBT.

So we recover the results of TD9, but γ is rescaled by the mass.

8. The harmonic potential has the form V(x) = kx2, so the equation of motion for a particle in a harmonic
potential connected to a heat bath is,

mẍ = −γẋ − kx + η(t),

which in phase space results in a system of equations for the position and velocity,
+
,

-

ẋ = v

v̇ = − γ

m
v − k

m
x +

1
m

η(t).
(3)

In equilibrium, we have seen that the strength of the noise must obeys σ2 = 2γkBT. Therefore, in
equilibrium we must have,

〈η(t)〉 = 0

〈η(t1)η(t2)〉 = 2γkBTm2δ(t1 − t2).

9. Leveraging the Wiener-Kinchin theorem, we can estimate the autocorrelation functions as,

Cx(τ) = 〈x(t)x(t + τ)〉 = F−1 'P̂x(ω)
(

where F−1 represent the inverse Fourier transform, and P̂x(ω) is the spectral density. Taking the Fourier
transform of Eq. (3) we get,

−iωx̂(ω) = v̂(ω)

−iωv̂(ω) = − γ

m
v̂(ω)− ω2

0 x̂(ω) +
1
m

η̂(ω),

where ω2
0 = k

m . Solving for x̂(ω) we get,

x̂(ω) =
1
m

η̂(ω)

ω2
0 − ω2 − iω γ

m
.
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The power spectral density is then

P̂x(ω) =

.
1

m2

P̂η(ω)

(ω2
0 − ω2 − iω γ

m )(ω2
0 − ω2 + iω γ

m )

/

P̂x(ω) =
1

m2
2γkBTm2

(ω2
0 − ω2 − iω γ

m )(ω2
0 − ω2 + iω γ

m )
,

where we leverage the Fourier transform of the correlation function of the noise. Leveraging the Wiener-
Kinchin theorem, we can now obtain the correlation function of x as,

Cx(t) =
2γkBT

2π

! ∞

−∞

e−iωt

(ω2
0 − w2)2 + γ2

m2 ω2
.

We solve this integral with the residue theorem. Since the exponent is located in the negative half plane,
we take a clockwise contour of the lower half plane resulting in,

Cx(t) =
γkBT

π
(−2πi)∑ residues

The roots of the denominator are located at

ω = ± iγ
2m

±
0

ω2
0 −

γ2

4m2 .

When ω2
0 −

γ2

4m2 > 0, we are in the underdamped regime, in which the harmonic oscillations dominate
over the damping, and so we have two poles in the negative half plane,

ω = ±ω1 − i
γ

2m
,

resulting in,

Cx(t) = γkBT(−2i)

1
e−i(ω1−i γ

2m )t

(2ω1)(2ω1 − i γ
m )(−i γ

m )
+

e−i(−ω1−i γ
2m )t

(−2ω1)(−2ω1 − i γ
m )(−i γ

m )

2

= γkBT(−2i)

1
e−ω1te−

γ
2m t(2ω1 + i γ

m ) + eω1te−
γ

2m t(2ω1 − i γ
m )

(−2i) γ
m ω14ω2

0

2

=
kBTm
4ω2

0

e−
γ

2m t

ω1

3
2ω1

%
eiω1t + e−iω1t

&
+ i

γ

m

%
e−iω1t − eiω1t

&4

=
kBTm

ω2
0

e−
γ

2m t
#

cos ω1t +
γ

2mω1
sin ω1t

$
,

And so in the underdamped regime the autocorrelation function exhibits an oscillatory component.
When ω2

0 −
γ2

4m2 < 0, we are in the overdamped regime, in which the damping dominates the dynamics
and oscillations are no longer present. In this case we also have two poles in the negative half plane,

ω = ±iω̂1 − i
γ

2m
,

where ω̂2
1 = γ2

4m − ω2
0, and thus γ

2m >
5

γ2

4m − ω2
0. In this case, the correlation function becomes,

Cx(t) = γkBT(−2i)

1
e−i(iω̂1−i γ

2m )t

(2iω̂1)(2ω̂1 − i γ
m )(−i γ

m )
+

e−i(−iω̂1−i γ
2m )t

(−2iω̂1)(−2iω̂1 − i γ
m )(−i γ

m )

2

= γkBT(−2i)

1
eω̂1te−

γ
2m t(2ω̂1 +

γ
m ) + e−ω̂1te−

γ
2m t(2ω̂1 − γ

m )

(−2i) γ
m ω̂14ω2

0

2

=
kBTm
4ω2

0

e−
γ

2m t

ω̂1

3
2ω̂1

'
eω̂1t + e−ω̂1t(+ i

γ

m
'
eω̂1t − e−ω̂1t(

4

=
kBTm

ω2
0

e−
γ

2m t
#

cosh ω̂1t +
γ

2mω̂1
sinh ω̂1t

$
,

and so the oscillatory behavior of the correlation function vanishes accordingly.
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